BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 25797528)

  • 1. Recovery of absorbance spectra of micrometer-sized biological and inanimate particles.
    Lukacs R; Blümel R; Zimmerman B; Bağcıoğlu M; Kohler A
    Analyst; 2015 May; 140(9):3273-84. PubMed ID: 25797528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimising contributions from scattering in infrared spectra by means of an integrating sphere.
    Dazzi A; Deniset-Besseau A; Lasch P
    Analyst; 2013 Jul; 138(14):4191-201. PubMed ID: 23757480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of Mie ripples in the synchrotron Fourier transform infrared spectra of spheroidal pollen grains.
    Blümel R; Lukacs R; Zimmermann B; Bağcıoğlu M; Kohler A
    J Opt Soc Am A Opt Image Sci Vis; 2018 Oct; 35(10):1769-1779. PubMed ID: 30462098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mie scatter corrections in single cell infrared microspectroscopy.
    Konevskikh T; Lukacs R; Blümel R; Ponossov A; Kohler A
    Faraday Discuss; 2016 Jun; 187():235-57. PubMed ID: 27034998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved algorithm for fast resonant Mie scatter correction of infrared spectra of cells and tissues.
    Konevskikh T; Lukacs R; Kohler A
    J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28792669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating and correcting mie scattering in synchrotron-based microscopic fourier transform infrared spectra by extended multiplicative signal correction.
    Kohler A; Sulé-Suso J; Sockalingum GD; Tobin M; Bahrami F; Yang Y; Pijanka J; Dumas P; Cotte M; van Pittius DG; Parkes G; Martens H
    Appl Spectrosc; 2008 Mar; 62(3):259-66. PubMed ID: 18339231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of absorption spectra from Fourier transform infrared (FT-IR) microspectroscopic measurements of intact spheres.
    van Dijk T; Mayerich D; Carney PS; Bhargava R
    Appl Spectrosc; 2013 May; 67(5):546-52. PubMed ID: 23643044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonant Mie scattering in infrared spectroscopy of biological materials--understanding the 'dispersion artefact'.
    Bassan P; Byrne HJ; Bonnier F; Lee J; Dumas P; Gardner P
    Analyst; 2009 Aug; 134(8):1586-93. PubMed ID: 20448924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution.
    Huth F; Govyadinov A; Amarie S; Nuansing W; Keilmann F; Hillenbrand R
    Nano Lett; 2012 Aug; 12(8):3973-8. PubMed ID: 22703339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Allergenic Pollen by FTIR Microspectroscopy.
    Zimmerman B; Tafintseva V; Bağcıoğlu M; Høegh Berdahl M; Kohler A
    Anal Chem; 2016 Jan; 88(1):803-11. PubMed ID: 26599685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrimination of grass pollen of different species by FTIR spectroscopy of individual pollen grains.
    Diehn S; Zimmermann B; Tafintseva V; Bağcıoğlu M; Kohler A; Ohlson M; Fjellheim S; Kneipp J
    Anal Bioanal Chem; 2020 Sep; 412(24):6459-6474. PubMed ID: 32350580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonant Mie scattering (RMieS) correction of infrared spectra from highly scattering biological samples.
    Bassan P; Kohler A; Martens H; Lee J; Byrne HJ; Dumas P; Gazi E; Brown M; Clarke N; Gardner P
    Analyst; 2010 Feb; 135(2):268-77. PubMed ID: 20098758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of deformation of absorbing scatterers on Mie-type signatures in infrared microspectroscopy.
    Brandsrud MA; Blümel R; Solheim JH; Kohler A
    Sci Rep; 2021 Feb; 11(1):4675. PubMed ID: 33633244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Study of UV Scattering Polarization Properties of Spherical Particles of Haze.
    Zhao TF; Wang C; Ke XZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Mar; 37(3):665-71. PubMed ID: 30148336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectric Sphere Clusters as a Model to Understand Infrared Spectroscopic Imaging Data Recorded from Complex Samples.
    Rasskazov IL; Spegazzini N; Carney PS; Bhargava R
    Anal Chem; 2017 Oct; 89(20):10813-10818. PubMed ID: 28895722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro-brillouin study of the eigenvibrations of single isolated polymer nanospheres.
    Li Y; Lim HS; Wang ZK; Ng SC; Kuok MH
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5869-72. PubMed ID: 19198319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infrared refractive index dispersion of polymethyl methacrylate spheres from Mie ripples in Fourier-transform infrared microscopy extinction spectra.
    Blümel R; Bağcioğlu M; Lukacs R; Kohler A
    J Opt Soc Am A Opt Image Sci Vis; 2016 Sep; 33(9):1687-96. PubMed ID: 27607489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The applicability of Fourier transform infrared microspectroscopy for correction against matrix effects in X-ray fluorescence microimaging of tissues.
    Szczerbowska-Boruchowska M; Stec P; Czyzycki M; Szczerbowski Z; Simon R; Baumbach T; Ziomber-Lisiak A
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 May; 293():122468. PubMed ID: 36787676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic signatures of single, isolated cancer cell nuclei using synchrotron infrared microscopy.
    Pijanka JK; Kohler A; Yang Y; Dumas P; Chio-Srichan S; Manfait M; Sockalingum GD; Sulé-Suso J
    Analyst; 2009 Jun; 134(6):1176-81. PubMed ID: 19475145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FTIR bio-spectroscopy scattering correction using natural biological characteristics of different cell lines.
    Hariri S; Barzegari B S; Keshavarz F K; Nikounezhad N; Safaei B; Farnam G; Shirazi FH
    Analyst; 2019 Sep; 144(19):5810-5828. PubMed ID: 31469152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.