BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 25797808)

  • 1. In vivo dynamic changes of dimensions in the lumbar intervertebral foramen.
    Zhong W; Driscoll SJ; Tsai TY; Wang S; Mao H; Cha TD; Wood KB; Li G
    Spine J; 2015 Jul; 15(7):1653-9. PubMed ID: 25797808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimensional Changes of Lumbar Intervertebral Foramen in Direct Anterior Approach-Specific Hyperextension Supine Position.
    Liu MY; Wang HB; Liu SW; Zhang GP; Liu JG; Yang C
    Orthop Surg; 2020 Aug; 12(4):1173-1181. PubMed ID: 32596974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vivo Characteristics of Nondegenerated Adjacent Segment Intervertebral Foramina in Patients With Degenerative Disc Disease During Flexion-Extension.
    Cha TD; Moore G; Liow MHL; Zhong W; Wu M; Wang S; Kang JD; Wood KB; Li G
    Spine (Phila Pa 1976); 2017 Mar; 42(6):359-365. PubMed ID: 27379419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic motion characteristics of the lower lumbar spine: implication to lumbar pathology and surgical treatment.
    Wu M; Wang S; Driscoll SJ; Cha TD; Wood KB; Li G
    Eur Spine J; 2014 Nov; 23(11):2350-8. PubMed ID: 24777671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of coupled bending of the lumbar spine during dynamic axial rotation of the body.
    Shin JH; Wang S; Yao Q; Wood KB; Li G
    Eur Spine J; 2013 Dec; 22(12):2671-7. PubMed ID: 23625336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apportionment of lumbar L2-S1 rotation across individual motion segments during a dynamic lifting task.
    Aiyangar A; Zheng L; Anderst W; Zhang X
    J Biomech; 2015 Oct; 48(13):3709-15. PubMed ID: 26362687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sagittal plane rotation center of lower lumbar spine during a dynamic weight-lifting activity.
    Liu Z; Tsai TY; Wang S; Wu M; Zhong W; Li JS; Cha T; Wood K; Li G
    J Biomech; 2016 Feb; 49(3):371-5. PubMed ID: 26805460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dimensional changes of the neuroforamina in subaxial cervical spine during in vivo dynamic flexion-extension.
    Mao H; Driscoll SJ; Li JS; Li G; Wood KB; Cha TD
    Spine J; 2016 Apr; 16(4):540-6. PubMed ID: 26681352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capturing three-dimensional in vivo lumbar intervertebral joint kinematics using dynamic stereo-X-ray imaging.
    Aiyangar AK; Zheng L; Tashman S; Anderst WJ; Zhang X
    J Biomech Eng; 2014 Jan; 136(1):011004. PubMed ID: 24149991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase lag of the intersegmental motion in flexion-extension of the lumbar and lumbosacral spine. An in vivo study.
    Kanayama M; Abumi K; Kaneda K; Tadano S; Ukai T
    Spine (Phila Pa 1976); 1996 Jun; 21(12):1416-22. PubMed ID: 8792517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Range of motion and orientation of the lumbar facet joints in vivo.
    Kozanek M; Wang S; Passias PG; Xia Q; Li G; Bono CM; Wood KB; Li G
    Spine (Phila Pa 1976); 2009 Sep; 34(19):E689-96. PubMed ID: 19730201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo range of motion of the lumbar spinous processes.
    Xia Q; Wang S; Passias PG; Kozanek M; Li G; Grottkau BE; Wood KB; Li G
    Eur Spine J; 2009 Sep; 18(9):1355-62. PubMed ID: 19543753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors affecting dynamic foraminal stenosis in the lumbar spine.
    Singh V; Montgomery SR; Aghdasi B; Inoue H; Wang JC; Daubs MD
    Spine J; 2013 Sep; 13(9):1080-7. PubMed ID: 23669126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo loads in the lumbar L3-4 disc during a weight lifting extension.
    Wang S; Park WM; Kim YH; Cha T; Wood K; Li G
    Clin Biomech (Bristol, Avon); 2014 Feb; 29(2):155-60. PubMed ID: 24345591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphologic changes in the lumbar intervertebral foramen due to flexion-extension, lateral bending, and axial rotation: an in vitro anatomic and biomechanical study.
    Fujiwara A; An HS; Lim TH; Haughton VM
    Spine (Phila Pa 1976); 2001 Apr; 26(8):876-82. PubMed ID: 11317109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Application of digital orthopedic technology for observing degenerative lumbar segmental instability of three-dimensional kinematic characteristics in vivo].
    Wang B; Xia Q; Miao J; Xu H; Yu H; Wang S; Li G
    Zhonghua Yi Xue Za Zhi; 2014 Aug; 94(29):2264-8. PubMed ID: 25391868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmental in vivo vertebral motion during functional human lumbar spine activities.
    Li G; Wang S; Passias P; Xia Q; Li G; Wood K
    Eur Spine J; 2009 Jul; 18(7):1013-21. PubMed ID: 19301040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using cineradiography for continuous dynamic-motion analysis of the lumbar spine.
    Takayanagi K; Takahashi K; Yamagata M; Moriya H; Kitahara H; Tamaki T
    Spine (Phila Pa 1976); 2001 Sep; 26(17):1858-65. PubMed ID: 11568694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segmental lumbar rotation in patients with discogenic low back pain during functional weight-bearing activities.
    Passias PG; Wang S; Kozanek M; Xia Q; Li W; Grottkau B; Wood KB; Li G
    J Bone Joint Surg Am; 2011 Jan; 93(1):29-37. PubMed ID: 21209266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical study of dynamic changes in L4-L5 foramen surface area in flexion and extension after implantation of four interspinous process devices.
    Hirsch C; Breque C; Ragot S; Pascal-Mousselard H; Richer JP; Scepi M; Khiami F
    Orthop Traumatol Surg Res; 2015 Apr; 101(2):215-9. PubMed ID: 25736197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.