BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25797823)

  • 1. Responses of primary production, leaf litter decomposition and associated communities to stream eutrophication.
    Dunck B; Lima-Fernandes E; Cássio F; Cunha A; Rodrigues L; Pascoal C
    Environ Pollut; 2015 Jul; 202():32-40. PubMed ID: 25797823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates.
    Ferreira V; Gulis V; Graça MA
    Oecologia; 2006 Oct; 149(4):718-29. PubMed ID: 16858587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams.
    Ferreira V; Castagneyrol B; Koricheva J; Gulis V; Chauvet E; Graça MA
    Biol Rev Camb Philos Soc; 2015 Aug; 90(3):669-88. PubMed ID: 24935280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream.
    Mora-Gómez J; Elosegi A; Duarte S; Cássio F; Pascoal C; Romaní AM
    FEMS Microbiol Ecol; 2016 Aug; 92(8):. PubMed ID: 27288197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive effects of dissolved nitrogen, phosphorus and litter chemistry on stream fungal decomposers.
    Jabiol J; Cornut J; Tlili A; Gessner MO
    FEMS Microbiol Ecol; 2018 Oct; 94(10):. PubMed ID: 30102345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial decomposer communities are mainly structured by trophic status in circumneutral and alkaline streams.
    Duarte S; Pascoal C; Garabétian F; Cássio F; Charcosset JY
    Appl Environ Microbiol; 2009 Oct; 75(19):6211-21. PubMed ID: 19648371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of flow scarcity on leaf-litter processing under oceanic climate conditions in calcareous streams.
    Martínez A; Pérez J; Molinero J; Sagarduy M; Pozo J
    Sci Total Environ; 2015 Jan; 503-504():251-7. PubMed ID: 24962591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal Variability May Affect Microbial Decomposers and Leaf Decomposition More Than Warming in Streams.
    Duarte S; Cássio F; Ferreira V; Canhoto C; Pascoal C
    Microb Ecol; 2016 Aug; 72(2):263-76. PubMed ID: 27193000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of acidification on leaf litter decomposition in benthic and hyporheic zones of woodland streams.
    Cornut J; Clivot H; Chauvet E; Elger A; Pagnout C; Guérold F
    Water Res; 2012 Dec; 46(19):6430-44. PubMed ID: 23069077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungal importance extends beyond litter decomposition in experimental early-successional streams.
    Frossard A; Gerull L; Mutz M; Gessner MO
    Environ Microbiol; 2012 Nov; 14(11):2971-83. PubMed ID: 22958100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Eucalyptus plantations on detritus, decomposers, and detritivores in streams.
    Graça MA; Pozo J; Canhoto C; Elosegi A
    ScientificWorldJournal; 2002 Apr; 2():1173-85. PubMed ID: 12805976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream.
    Mora-Gómez J; Duarte S; Cássio F; Pascoal C; Romaní AM
    Sci Total Environ; 2018 Apr; 621():486-496. PubMed ID: 29195197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid lipid nanoparticles affect microbial colonization and enzymatic activity throughout the decomposition of alder leaves in freshwater microcosms.
    Sampaio AC; Mendes RJ; Castro PG; Silva AM
    Ecotoxicol Environ Saf; 2017 Jan; 135():375-380. PubMed ID: 27776303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Priority effects of stream eutrophication and assembly history on beta diversity across aquatic consumers, decomposers and producers.
    Dunck B; Rodrigues L; Lima-Fernandes E; Cássio F; Pascoal C; Cottenie K
    Sci Total Environ; 2021 Nov; 797():149106. PubMed ID: 34303255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hidden Decomposers: the Role of Bacteria and Fungi in Recently Intermittent Alpine Streams Heterotrophic Pathways.
    Gruppuso L; Receveur JP; Fenoglio S; Bona F; Benbow ME
    Microb Ecol; 2023 Oct; 86(3):1499-1512. PubMed ID: 36646914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drought and detritivores determine leaf litter decomposition in calcareous streams of the Ebro catchment (Spain).
    Monroy S; Menéndez M; Basaguren A; Pérez J; Elosegi A; Pozo J
    Sci Total Environ; 2016 Dec; 573():1450-1459. PubMed ID: 27503627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Invasion of Native Riparian Forests by Acacia Species Affects In-Stream Litter Decomposition and Associated Microbial Decomposers.
    Pereira A; Ferreira V
    Microb Ecol; 2021 Jan; 81(1):14-25. PubMed ID: 32623497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect?
    Danger M; Cornut J; Chauvet E; Chavez P; Elger A; Lecerf A
    Ecology; 2013 Jul; 94(7):1604-13. PubMed ID: 23951720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. No evidence for leaf-trait dissimilarity effects on litter decomposition, fungal decomposers, and nutrient dynamics.
    Frainer A; Moretti MS; Xu W; Gessner MO
    Ecology; 2015 Feb; 96(2):550-61. PubMed ID: 26240875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus availability modulates the toxic effect of silver on aquatic fungi and leaf litter decomposition.
    Funck JA; Clivot H; Felten V; Rousselle P; Guérold F; Danger M
    Aquat Toxicol; 2013 Nov; 144-145():199-207. PubMed ID: 24184839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.