BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 25797827)

  • 1. Cascade upgrading of γ-valerolactone to biofuels.
    Yan K; Lafleur T; Wu X; Chai J; Wu G; Xie X
    Chem Commun (Camb); 2015 Apr; 51(32):6984-7. PubMed ID: 25797827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonenzymatic sugar production from biomass using biomass-derived γ-valerolactone.
    Luterbacher JS; Rand JM; Alonso DM; Han J; Youngquist JT; Maravelias CT; Pfleger BF; Dumesic JA
    Science; 2014 Jan; 343(6168):277-80. PubMed ID: 24436415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of γ-Valerolactone from Carbohydrates and its Applications.
    Zhang Z
    ChemSusChem; 2016 Jan; 9(2):156-71. PubMed ID: 26733161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced biorefinery based on the fractionation of biomass in γ-valerolactone and water.
    Fang W; Sixta H
    ChemSusChem; 2015 Jan; 8(1):73-6. PubMed ID: 25370304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A catalytic biofuel production strategy involving separate conversion of hemicellulose and cellulose using 2-sec-butylphenol (SBP) and lignin-derived (LD) alkylphenol solvents.
    Kim S; Han J
    Bioresour Technol; 2016 Mar; 204():1-8. PubMed ID: 26765845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-step upgrading of bio-based furfural to γ-valerolactone
    Li M; Liu Y; Lin X; Tan J; Yang S; Li H
    RSC Adv; 2021 Oct; 11(56):35415-35424. PubMed ID: 35493184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Catalytic Hydrogenation of Biomass-Derived Methyl Levulinate to γ-Valerolactone in Methanol.
    Tang X; Li Z; Zeng X; Jiang Y; Liu S; Lei T; Sun Y; Lin L
    ChemSusChem; 2015 May; 8(9):1601-7. PubMed ID: 25873556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave-Assisted γ-Valerolactone Production for Biomass Lignin Extraction: A Cascade Protocol.
    Tabasso S; Grillo G; Carnaroglio D; Calcio Gaudino E; Cravotto G
    Molecules; 2016 Mar; 21(4):413. PubMed ID: 27023511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of biomass-derived levulinate and formate esters into γ-valerolactone over supported gold catalysts.
    Du XL; Bi QY; Liu YM; Cao Y; Fan KN
    ChemSusChem; 2011 Dec; 4(12):1838-43. PubMed ID: 22105964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of aromatic hydrocarbons through catalytic pyrolysis of γ-valerolactone from biomass.
    Zhao Y; Fu Y; Guo QX
    Bioresour Technol; 2012 Jun; 114():740-4. PubMed ID: 22507905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Valeric Biofuel Production from γ-Valerolactone over Bifunctional Catalysts with Moderate Noble-Metal Loading.
    Martínez Figueredo KG; Virgilio EM; Segobia DJ; Bertero NM
    Chempluschem; 2021 Jul; 86(9):1342-1346. PubMed ID: 34405959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond.
    Omoruyi U; Page S; Hallett J; Miller PW
    ChemSusChem; 2016 Aug; 9(16):2037-47. PubMed ID: 27464831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electricity storage in biofuels: selective electrocatalytic reduction of levulinic acid to valeric acid or γ-valerolactone.
    Xin L; Zhang Z; Qi J; Chadderdon DJ; Qiu Y; Warsko KM; Li W
    ChemSusChem; 2013 Apr; 6(4):674-86. PubMed ID: 23457116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of levulinic acid into γ-valerolactone using Fe3(CO)12: mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis.
    Metzker G; Burtoloso AC
    Chem Commun (Camb); 2015 Sep; 51(75):14199-202. PubMed ID: 26258183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Solid Acid Supports on the Bifunctional Catalysis of Levulinic Acid to γ-Valerolactone: Catalytic Activity and Stability.
    Yu Z; Lu X; Bai H; Xiong J; Feng W; Ji N
    Chem Asian J; 2020 Apr; 15(8):1182-1201. PubMed ID: 32012471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic conversion of γ-valerolactone to ε-caprolactam: towards nylon from renewable feedstock.
    Raoufmoghaddam S; Rood MT; Buijze FK; Drent E; Bouwman E
    ChemSusChem; 2014 Jul; 7(7):1984-90. PubMed ID: 24938779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot catalytic conversion of cellulose and of woody biomass solids to liquid fuels.
    Matson TD; Barta K; Iretskii AV; Ford PC
    J Am Chem Soc; 2011 Sep; 133(35):14090-7. PubMed ID: 21806029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent-enabled nonenyzmatic sugar production from biomass for chemical and biological upgrading.
    Luterbacher JS; Alonso DM; Rand JM; Questell-Santiago YM; Yeap JH; Pfleger BF; Dumesic JA
    ChemSusChem; 2015 Apr; 8(8):1317-22. PubMed ID: 25782703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support.
    Sorokina SA; Mikhailov SP; Kuchkina NV; Bykov AV; Vasiliev AL; Ezernitskaya MG; Golovin AL; Nikoshvili LZ; Sulman MG; Shifrina ZB
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of furfural from xylose, xylan and corncob in gamma-valerolactone using FeCl3·6H2O as catalyst.
    Zhang L; Yu H; Wang P; Li Y
    Bioresour Technol; 2014 Jan; 151():355-60. PubMed ID: 24262845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.