BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25797928)

  • 1. Exploring the diameter and surface dependent conformational changes in carbon nanotube-protein corona and the related cytotoxicity.
    Zhao X; Lu D; Hao F; Liu R
    J Hazard Mater; 2015 Jul; 292():98-107. PubMed ID: 25797928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MWCNT interactions with protein: surface-induced changes in protein adsorption and the impact of protein corona on cellular uptake and cytotoxicity.
    Zhang T; Tang M; Yao Y; Ma Y; Pu Y
    Int J Nanomedicine; 2019; 14():993-1009. PubMed ID: 30799918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insight into the binding interaction of hydroxylated carbon nanotubes with bovine serum albumin.
    Guan Y; Zhang H; Wang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():556-63. PubMed ID: 24508894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the Surface Functional Group Density on the Carbon-Nanotube-Induced α-Chymotrypsin Structure and Activity Alterations.
    Zhao X; Hao F; Lu D; Liu W; Zhou Q; Jiang G
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18880-90. PubMed ID: 26248557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotubes induce secondary structure changes of bovine albumin in aqueous phase.
    Yang M; Meng J; Mao X; Yang Y; Cheng X; Yuan H; Wang C; Xu H
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7550-3. PubMed ID: 21137980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of a bovine serum albumin diligand complex with rutin and single-walled carbon nanotubes for the reduction of cytotoxicity.
    Tian R; Long X; Yang Z; Lu N; Peng YY
    Biophys Chem; 2020 Jan; 256():106268. PubMed ID: 31707064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insights into the behavior of bovine serum albumin adsorbed onto carbon nanotubes: comprehensive spectroscopic studies.
    Zhao X; Liu R; Chi Z; Teng Y; Qin P
    J Phys Chem B; 2010 Apr; 114(16):5625-31. PubMed ID: 20373820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmable self-assembly of carbon nanotubes assisted by reversible denaturation of a protein.
    Nithiyasri P; Balaji K; Brindha P; Parthasarathy M
    Nanotechnology; 2012 Nov; 23(46):465603. PubMed ID: 23095367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diameter-selective dispersion of carbon nanotubes by β-lactoglobulin whey protein.
    Karchemsky F; Drug E; Mashiach-Farkash E; Fadeev L; Wolfson HJ; Gozin M; Regev O
    Colloids Surf B Biointerfaces; 2013 Dec; 112():16-22. PubMed ID: 23933103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Fluorescence study on the interactions between carbon nanotubes and bovine serum albumin].
    Li SS; He H; Chen Z; Zha J; Chuong PH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Oct; 30(10):2689-92. PubMed ID: 21137401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes.
    Hedmer M; Isaxon C; Nilsson PT; Ludvigsson L; Messing ME; Genberg J; Skaug V; Bohgard M; Tinnerberg H; Pagels JH
    Ann Occup Hyg; 2014 Apr; 58(3):355-79. PubMed ID: 24389082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotube-protein carriers enhance size-dependent self-adjuvant antibody response to haptens.
    Parra J; Abad-Somovilla A; Mercader JV; Taton TA; Abad-Fuentes A
    J Control Release; 2013 Sep; 170(2):242-51. PubMed ID: 23735572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotubes for delivery of small molecule drugs.
    Wong BS; Yoong SL; Jagusiak A; Panczyk T; Ho HK; Ang WH; Pastorin G
    Adv Drug Deliv Rev; 2013 Dec; 65(15):1964-2015. PubMed ID: 23954402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of carboxylated single-walled carbon nanotubes with bovine serum albumin.
    Li L; Lin R; He H; Jiang L; Gao M
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 105():45-51. PubMed ID: 23291228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrasting effect of gold nanoparticles and nanorods with different surface modifications on the structure and activity of bovine serum albumin.
    Chakraborty S; Joshi P; Shanker V; Ansari ZA; Singh SP; Chakrabarti P
    Langmuir; 2011 Jun; 27(12):7722-31. PubMed ID: 21591651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity of catalase adsorbed to carbon nanotubes: effects of carbon nanotube surface properties.
    Zhang C; Luo S; Chen W
    Talanta; 2013 Sep; 113():142-7. PubMed ID: 23708636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxic effects of ethanol on bovine serum albumin.
    Liu R; Qin P; Wang L; Zhao X; Liu Y; Hao X
    J Biochem Mol Toxicol; 2010; 24(1):66-71. PubMed ID: 20175145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superior activity of structurally deprived enzyme-carbon nanotube hybrids in cationic reverse micelles.
    Das D; Das PK
    Langmuir; 2009 Apr; 25(8):4421-8. PubMed ID: 19245221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface design of carbon nanotubes for optimizing the adsorption and electrochemical response of analytes.
    Hu C; Hu S
    Langmuir; 2008 Aug; 24(16):8890-7. PubMed ID: 18630937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of carbon nanotubes network toxicity in zebrafish (Danio rerio) model.
    Filho Jde S; Matsubara EY; Franchi LP; Martins IP; Rivera LM; Rosolen JM; Grisolia CK
    Environ Res; 2014 Oct; 134():9-16. PubMed ID: 25042031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.