These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25798305)

  • 1. Imaging of a linear diode bar for an optical cell stretcher.
    Roth KB; Neeves KB; Squier J; Marr DW
    Biomed Opt Express; 2015 Mar; 6(3):807-14. PubMed ID: 25798305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput linear optical stretcher for mechanical characterization of blood cells.
    Roth KB; Neeves KB; Squier J; Marr DW
    Cytometry A; 2016 Apr; 89(4):391-7. PubMed ID: 26565892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear diode laser bar optical stretchers for cell deformation.
    Sraj I; Marr DW; Eggleton CD
    Biomed Opt Express; 2010 Aug; 1(2):482-488. PubMed ID: 21258483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping.
    Applegate RW; Squier J; Vestad T; Oakey J; Marr DW; Bado P; Dugan MA; Said AA
    Lab Chip; 2006 Mar; 6(3):422-6. PubMed ID: 16511626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars.
    Applegate R; Squier J; Vestad T; Oakey J; Marr D
    Opt Express; 2004 Sep; 12(19):4390-8. PubMed ID: 19483988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformation of phospholipid vesicles in an optical stretcher.
    Delabre U; Feld K; Crespo E; Whyte G; Sykes C; Seifert U; Guck J
    Soft Matter; 2015 Aug; 11(30):6075-88. PubMed ID: 26135540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells.
    Bellini N; Vishnubhatla KC; Bragheri F; Ferrara L; Minzioni P; Ramponi R; Cristiani I; Osellame R
    Opt Express; 2010 Mar; 18(5):4679-88. PubMed ID: 20389480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser scanning laser diode photoacoustic microscopy system.
    Erfanzadeh M; Kumavor PD; Zhu Q
    Photoacoustics; 2018 Mar; 9():1-9. PubMed ID: 29201646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erythrocyte deformation in high-throughput optical stretchers.
    Sraj I; Szatmary AC; Desai SA; Marr DW; Eggleton CD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041923. PubMed ID: 22680514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher.
    Bellini N; Bragheri F; Cristiani I; Guck J; Osellame R; Whyte G
    Biomed Opt Express; 2012 Oct; 3(10):2658-68. PubMed ID: 23082304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The optical stretcher: a novel laser tool to micromanipulate cells.
    Guck J; Ananthakrishnan R; Mahmood H; Moon TJ; Cunningham CC; Käs J
    Biophys J; 2001 Aug; 81(2):767-84. PubMed ID: 11463624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a graded index microlens based fiber optical trap and its characterization using principal component analysis.
    Nylk J; Kristensen MV; Mazilu M; Thayil AK; Mitchell CA; Campbell EC; Powis SJ; Gunn-Moore FJ; Dholakia K
    Biomed Opt Express; 2015 Apr; 6(4):1512-9. PubMed ID: 25909032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The optical stretcher as a tool for single-particle X-ray imaging and diffraction.
    Nicolas JD; Hagemann J; Sprung M; Salditt T
    J Synchrotron Radiat; 2018 Jul; 25(Pt 4):1196-1205. PubMed ID: 29979182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Columnar deformation of human red blood cell by highly localized fiber optic Bessel beam stretcher.
    Lee S; Joo B; Jeon PJ; Im S; Oh K
    Biomed Opt Express; 2015 Nov; 6(11):4417-32. PubMed ID: 26601005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical trapping with "on-demand" two-photon luminescence using Cr:LiSAF laser with optically addressed saturable Bragg reflector.
    Savitski VG; Metzger NK; Calvez S; Burns D; Sibbett W; Brown CT
    Opt Express; 2012 Mar; 20(7):7066-70. PubMed ID: 22453387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced operation of femtosecond lasers and applications in cell transfection.
    Brown CT; Stevenson DJ; Tsampoula X; McDougall C; Lagatsky AA; Sibbett W; Gunn-Moore FJ; Dholakia K
    J Biophotonics; 2008 Aug; 1(3):183-99. PubMed ID: 19412968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulse stretcher with variable pulse length for excimer laser applications.
    Burkert A; Bergmann J; Triebel W; Natura U
    Rev Sci Instrum; 2010 Mar; 81(3):033104. PubMed ID: 20370158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic-based high-throughput optical trapping of nanoparticles.
    Kotnala A; Zheng Y; Fu J; Cheng W
    Lab Chip; 2017 Jun; 17(12):2125-2134. PubMed ID: 28561826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical-trapping micromanipulation using 780-nm diode lasers.
    Schut TC; Schipper EF; de Grooth BG; Greve J
    Opt Lett; 1993 Mar; 18(6):447-9. PubMed ID: 19802164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-shared optical tweezers with a microlens array for dynamic microbead arrays.
    Tanaka Y; Wakida S
    Biomed Opt Express; 2015 Oct; 6(10):3670-7. PubMed ID: 26504619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.