These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25798306)

  • 1. 2-D PSTD Simulation of focusing monochromatic light through a macroscopic scattering medium via optical phase conjugation.
    Tseng SH
    Biomed Opt Express; 2015 Mar; 6(3):815-26. PubMed ID: 25798306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the sub-diffraction focusing phenomenon of light propagation through scattering medium.
    Tseng SH
    Methods; 2018 Mar; 136():75-80. PubMed ID: 29127044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2-D PSTD Simulation of the time-reversed ultrasound-encoded deep-tissue imaging technique.
    Tseng SH; Ting WL; Wang SJ
    Biomed Opt Express; 2014 Mar; 5(3):882-94. PubMed ID: 24688821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2-D PSTD Simulation of optical phase conjugation for turbidity suppression.
    Tseng SH; Yang C
    Opt Express; 2007 Nov; 15(24):16005-16. PubMed ID: 19550887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of enhanced backscattering of light by numerically solving Maxwell's equations without heuristic approximations.
    Tseng S; Kim Y; Taflove A; Maitland D; Backman V; Walsh J
    Opt Express; 2005 May; 13(10):3666-72. PubMed ID: 19495273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exact solution of Maxwell's equations for optical interactions with a macroscopic random medium.
    Tseng SH; Greene JH; Taflove A; Maitland D; Backman V; Walsh JT
    Opt Lett; 2004 Jun; 29(12):1393-5. PubMed ID: 15233446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-PSTD simulation and polarization analysis of a light pulse transmitted through a scattering medium.
    Devaux F; Lantz E
    Opt Express; 2013 Oct; 21(21):24969-84. PubMed ID: 24150340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PSTD Simulation of optical phase conjugation of light propagating long optical paths.
    Tseng SH
    Opt Express; 2009 Mar; 17(7):5490-5. PubMed ID: 19333316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite-difference time-domain analysis of increased penetration depth in optical coherence tomography by wavefront shaping.
    Kim JU; Choi H; Park Y; Shin J
    Biomed Opt Express; 2018 Aug; 9(8):3883-3897. PubMed ID: 30338162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating the scanning of a focused beam through scattering media using a numerical solution of Maxwell's equations.
    Elmaklizi A; Schäfer J; Kienle A
    J Biomed Opt; 2014 Jul; 19(7):071404. PubMed ID: 24395650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media.
    Mishchenko MI; Dlugach JM; Yurkin MA; Bi L; Cairns B; Liu L; Panetta RL; Travis LD; Yang P; Zakharova NT
    Phys Rep; 2016 May; 632():1-75. PubMed ID: 29657355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exact solution of Maxwell's equations for optical interactions with a macroscopic random medium: addendum.
    Tseng SH; Greene JH; Taflove A; Maitland D; Backman V; Walsh JT
    Opt Lett; 2005 Jan; 30(1):56-7. PubMed ID: 15648636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of the pseudospectral time-domain method to the scattering of light by nonspherical particles.
    Chen G; Yang P; Kattawar GW
    J Opt Soc Am A Opt Image Sci Vis; 2008 Mar; 25(3):785-90. PubMed ID: 18311250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corneal transparency and scleral opacity arises from the nanoarchitecture of the constituent collagen fibrils.
    Tseng SH; Yang CY; Li JH; Jeng YM; Ranasinghesagara JC; Venugopalan V
    Biomed Opt Express; 2022 Mar; 13(3):1485-1496. PubMed ID: 35414992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-reversing a monochromatic subwavelength optical focus by optical phase conjugation of multiply-scattered light.
    Park J; Park C; Lee K; Cho YH; Park Y
    Sci Rep; 2017 Jan; 7():41384. PubMed ID: 28134267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-polarization analog optical phase conjugation for focusing light through scattering media.
    Cheng Z; Yang J; Wang LV
    Appl Phys Lett; 2019 Jun; 114(23):231104. PubMed ID: 31312071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Penetration depth of focused beams in highly scattering media investigated with a numerical solution of Maxwell's equations in two dimensions.
    Elmaklizi A; Reitzle D; Brandes A; Kienle A
    J Biomed Opt; 2015 Jun; 20(6):065007. PubMed ID: 26112366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhance the delivery of light energy ultra-deep into turbid medium by controlling multiple scattering photons to travel in open channels.
    Cao J; Yang Q; Miao Y; Li Y; Qiu S; Zhu Z; Wang P; Chen Z
    Light Sci Appl; 2022 Apr; 11(1):108. PubMed ID: 35462570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monochromatic aberrations in resonant optical elements applied to a focusing multilevel reflectarray.
    Ginn J; Alda J; Gómez-Pedrero JA; Boreman G
    Opt Express; 2010 May; 18(11):10931-40. PubMed ID: 20588948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grid-adaptive Fourier pseudospectral time domain model for the light scattering simulation of atmospheric nonspherical particles.
    Shuai H; Jiaqi Z; Shulei L; Lei L
    Opt Express; 2023 Mar; 31(6):10082-10100. PubMed ID: 37157565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.