These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 25798317)

  • 1. Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics.
    Vinas M; Dorronsoro C; Cortes D; Pascual D; Marcos S
    Biomed Opt Express; 2015 Mar; 6(3):948-62. PubMed ID: 25798317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Verification of the lack of correlation between age and longitudinal chromatic aberrations of the human eye from the visible to the infrared.
    Nakajima M; Hiraoka T; Hirohara Y; Oshika T; Mihashi T
    Biomed Opt Express; 2015 Jul; 6(7):2676-94. PubMed ID: 26203391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VioBio lab adaptive optics: technology and applications by women vision scientists.
    Marcos S; Benedí-García C; Aissati S; Gonzalez-Ramos AM; Lago CM; Radhkrishnan A; Romero M; Vedhakrishnan S; Sawides L; Vinas M
    Ophthalmic Physiol Opt; 2020 Mar; 40(2):75-87. PubMed ID: 32147855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses.
    Vinas M; Gonzalez-Ramos A; Dorronsoro C; Akondi V; Garzon N; Poyales F; Marcos S
    J Refract Surg; 2017 Nov; 33(11):736-742. PubMed ID: 29117412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical properties of the mouse eye.
    Geng Y; Schery LA; Sharma R; Dubra A; Ahmad K; Libby RT; Williams DR
    Biomed Opt Express; 2011 Feb; 2(4):717-38. PubMed ID: 21483598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses.
    Vinas M; Dorronsoro C; Garzón N; Poyales F; Marcos S
    J Cataract Refract Surg; 2015 Oct; 41(10):2115-24. PubMed ID: 26703287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Hydrophobic IOLs.
    Vinas M; Gonzalez-Ramos AM; Aissati S; Garzón N; Poyales F; Dorronsoro C; Marcos S
    J Refract Surg; 2020 Dec; 36(12):804-810. PubMed ID: 33295992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatic aberration correction of the human eye for retinal imaging in the near infrared.
    Fernández EJ; Unterhuber A; Povazay B; Hermann B; Artal P; Drexler W
    Opt Express; 2006 Jun; 14(13):6213-25. PubMed ID: 19516794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes.
    Zhai Y; Wang Y; Wang Z; Liu Y; Zhang L; He Y; Chang S
    Biomed Mater Eng; 2014; 24(6):3073-81. PubMed ID: 25227016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ocular aberrations up to the infrared range: from 632.8 to 1070 nm.
    Fernández EJ; Artal P
    Opt Express; 2008 Dec; 16(26):21199-208. PubMed ID: 19104549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aberrations of the human eye in visible and near infrared illumination.
    Llorente L; Diaz-Santana L; Lara-Saucedo D; Marcos S
    Optom Vis Sci; 2003 Jan; 80(1):26-35. PubMed ID: 12553541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Longitudinal Chromatic Aberration and Polychromatic Image Quality Metrics of Intraocular Lenses.
    Łabuz G; Papadatou E; Khoramnia R; Auffarth GU
    J Refract Surg; 2018 Dec; 34(12):832-838. PubMed ID: 30540366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of Longitudinal Chromatic Aberration in the Last Crystalline Lens Surface Using Hartmann Test and Purkinje Images.
    Calderon-Uribe U; Hernandez-Gomez G; Gomez-Vieyra A
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring and compensating for ocular longitudinal chromatic aberration.
    Jiang X; Kuchenbecker JA; Touch P; Sabesan R
    Optica; 2019 Aug; 6(8):981-990. PubMed ID: 33614858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation to the eye's chromatic aberration measured with an adaptive optics visual simulator.
    Fernandez EJ; Suchkov N; Artal P
    Opt Express; 2020 Dec; 28(25):37450-37458. PubMed ID: 33379579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of longitudinal chromatic aberration on through-focus visual acuity.
    Suchkov N; Fernández EJ; Artal P
    Opt Express; 2019 Nov; 27(24):35935-35947. PubMed ID: 31878758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrahigh resolution retinal imaging by visible light OCT with longitudinal achromatization.
    Chong SP; Zhang T; Kho A; Bernucci MT; Dubra A; Srinivasan VJ
    Biomed Opt Express; 2018 Apr; 9(4):1477-1491. PubMed ID: 29675296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of adaptive optics to determine the optimal ocular spherical aberration.
    Piers PA; Manzanera S; Prieto PM; Gorceix N; Artal P
    J Cataract Refract Surg; 2007 Oct; 33(10):1721-6. PubMed ID: 17889766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on chromatic aberration in a population of Chinese myopic eyes by means of optical design.
    He Y; Wang Y; Wang Z; Fang C; Liu Y; Zhang L; Zheng S; Wang L; Chang S
    Biomed Opt Express; 2013 May; 4(5):667-79. PubMed ID: 23667784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatic and wavefront aberrations: L-, M- and S-cone stimulation with typical and extreme retinal image quality.
    Autrusseau F; Thibos L; Shevell SK
    Vision Res; 2011 Nov; 51(21-22):2282-94. PubMed ID: 21906613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.