These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 25798468)

  • 1. All-optical electrophysiology in behaving animals.
    Vogt N
    Nat Methods; 2015 Feb; 12(2):101. PubMed ID: 25798468
    [No Abstract]   [Full Text] [Related]  

  • 2. Real-time optical mapping of neuronal activity: from single growth cones to the intact mammalian brain.
    Grinvald A
    Annu Rev Neurosci; 1985; 8():263-305. PubMed ID: 3885828
    [No Abstract]   [Full Text] [Related]  

  • 3. Design and construction of a photoresistive sensor for monitoring the rat vibrissal displacement.
    Dürig F; Albarracín AL; Farfán FD; Felice CJ
    J Neurosci Methods; 2009 May; 180(1):71-6. PubMed ID: 19427531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a twin tetrode microdrive and headstage for hippocampal single unit recordings in behaving mice.
    Jeantet Y; Cho YH
    J Neurosci Methods; 2003 Oct; 129(2):129-34. PubMed ID: 14511816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniature motorized microdrive and commutator system for chronic neural recording in small animals.
    Fee MS; Leonardo A
    J Neurosci Methods; 2001 Dec; 112(2):83-94. PubMed ID: 11716944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronically implanted hyperdrive for cortical recording and optogenetic control in behaving mice.
    Siegle JH; Carlen M; Meletis K; Tsai LH; Moore CI; Ritt J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7529-32. PubMed ID: 22256080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A lightweight telemetry system for recording neuronal activity in freely behaving small animals.
    Schregardus DS; Pieneman AW; Ter Maat A; Jansen RF; Brouwer TJ; Gahr ML
    J Neurosci Methods; 2006 Jul; 155(1):62-71. PubMed ID: 16490257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Juxtacellular recording and morphological identification of single neurons in freely moving rats.
    Tang Q; Brecht M; Burgalossi A
    Nat Protoc; 2014 Oct; 9(10):2369-81. PubMed ID: 25211514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autonomous head-mounted electrophysiology systems for freely behaving primates.
    Gilja V; Chestek CA; Nuyujukian P; Foster J; Shenoy KV
    Curr Opin Neurobiol; 2010 Oct; 20(5):676-86. PubMed ID: 20655733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A digital heterodyne laser interferometer for studying cochlear mechanics.
    Jacob S; Johansson C; Ulfendahl M; Fridberger A
    J Neurosci Methods; 2009 May; 179(2):271-7. PubMed ID: 19428537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale neural ensemble recording in the brains of freely behaving mice.
    Lin L; Chen G; Xie K; Zaia KA; Zhang S; Tsien JZ
    J Neurosci Methods; 2006 Jul; 155(1):28-38. PubMed ID: 16554093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conductance injection.
    Robinson HP
    Trends Neurosci; 1994 Apr; 17(4):147-8. PubMed ID: 7517591
    [No Abstract]   [Full Text] [Related]  

  • 13. From art to engineering? The rise of in vivo mammalian electrophysiology via genetically targeted labeling and nonlinear imaging.
    Kleinfeld D; Griesbeck O
    PLoS Biol; 2005 Oct; 3(10):e355. PubMed ID: 16207078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A minimally invasive displacement sensor for measuring brain micromotion in 3D with nanometer scale resolution.
    Vähäsöyrinki M; Tuukkanen T; Sorvoja H; Pudas M
    J Neurosci Methods; 2009 Jun; 180(2):290-5. PubMed ID: 19379772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Recording the activity of neurons of two brain structures in dogs during an alimentary conditioned reflex].
    Korolev EB; Kriukov IuD
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1976; 26(3):654-6. PubMed ID: 941518
    [No Abstract]   [Full Text] [Related]  

  • 16. Intracellular recording in behaving animals.
    Long MA; Lee AK
    Curr Opin Neurobiol; 2012 Feb; 22(1):34-44. PubMed ID: 22054814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optical telemetry system for underwater recording of electromyogram and neuronal activity from non-tethered crayfish.
    Tsuchida Y; Hama N; Takahata M
    J Neurosci Methods; 2004 Aug; 137(1):103-9. PubMed ID: 15196832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology.
    Andrásfalvy BK; Galiñanes GL; Huber D; Barbic M; Macklin JJ; Susumu K; Delehanty JB; Huston AL; Makara JK; Medintz IL
    Nat Methods; 2014 Dec; 11(12):1237-1241. PubMed ID: 25326662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Problems in the photo recording of electrical processes in neural networks].
    Iagodin SV; Nozdrachev AD; Pushkarev IuP
    Usp Fiziol Nauk; 1986; 17(4):111-27. PubMed ID: 2433845
    [No Abstract]   [Full Text] [Related]  

  • 20. A technique for microiontophoretic study of single neurones in the behaving monkey.
    Perrett DI; Rolls ET
    J Neurosci Methods; 1985 Feb; 12(4):289-95. PubMed ID: 3921775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.