These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25798469)

  • 1. Cryo-EM strikes gold.
    Doerr A
    Nat Methods; 2015 Feb; 12(2):102-3. PubMed ID: 25798469
    [No Abstract]   [Full Text] [Related]  

  • 2. Electron microscopy: Ultrastable gold substrates for electron cryomicroscopy.
    Russo CJ; Passmore LA
    Science; 2014 Dec; 346(6215):1377-80. PubMed ID: 25504723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing cryo-EM structures.
    Lawson CL; Chiu W
    J Struct Biol; 2018 Dec; 204(3):523-526. PubMed ID: 30321594
    [No Abstract]   [Full Text] [Related]  

  • 4. From Tube to Structure: SPA Cryo-EM Workflow Using Apoferritin as an Example.
    Diebolder CA; Dillard RS; Renault L
    Methods Mol Biol; 2021; 2305():229-256. PubMed ID: 33950393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-particle cryo-EM at atomic resolution.
    Nakane T; Kotecha A; Sente A; McMullan G; Masiulis S; Brown PMGE; Grigoras IT; Malinauskaite L; Malinauskas T; Miehling J; Uchański T; Yu L; Karia D; Pechnikova EV; de Jong E; Keizer J; Bischoff M; McCormack J; Tiemeijer P; Hardwick SW; Chirgadze DY; Murshudov G; Aricescu AR; Scheres SHW
    Nature; 2020 Nov; 587(7832):152-156. PubMed ID: 33087931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 'It opens up a whole new universe': Revolutionary microscopy technique sees individual atoms for first time.
    Callaway E
    Nature; 2020 Jun; 582(7811):156-157. PubMed ID: 32518336
    [No Abstract]   [Full Text] [Related]  

  • 7. Reducing effects of particle adsorption to the air-water interface in cryo-EM.
    Noble AJ; Wei H; Dandey VP; Zhang Z; Tan YZ; Potter CS; Carragher B
    Nat Methods; 2018 Oct; 15(10):793-795. PubMed ID: 30250056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MeasureIce: accessible on-the-fly measurement of ice thickness in cryo-electron microscopy.
    Brown HG; Hanssen E
    Commun Biol; 2022 Aug; 5(1):817. PubMed ID: 35965271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2.7 Å cryo-EM structure of vitrified M. musculus H-chain apoferritin from a compact 200 keV cryo-microscope.
    Hamdi F; Tüting C; Semchonok DA; Visscher KM; Kyrilis FL; Meister A; Skalidis I; Schmidt L; Parthier C; Stubbs MT; Kastritis PL
    PLoS One; 2020; 15(5):e0232540. PubMed ID: 32374767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron microscopy of biotinylated protein complexes bound to streptavidin monolayer crystals.
    Han BG; Walton RW; Song A; Hwu P; Stubbs MT; Yannone SM; Arbeláez P; Dong M; Glaeser RM
    J Struct Biol; 2012 Oct; 180(1):249-53. PubMed ID: 22584152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resolving individual atoms of protein complex by cryo-electron microscopy.
    Zhang K; Pintilie GD; Li S; Schmid MF; Chiu W
    Cell Res; 2020 Dec; 30(12):1136-1139. PubMed ID: 33139928
    [No Abstract]   [Full Text] [Related]  

  • 12. The 2017 Nobel Prize in Chemistry: cryo-EM comes of age.
    Shen PS
    Anal Bioanal Chem; 2018 Mar; 410(8):2053-2057. PubMed ID: 29423601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mycobacterium tuberculosis ferritin: a suitable workhorse protein for cryo-EM development.
    Gijsbers A; Zhang Y; Gao Y; Peters PJ; Ravelli RBG
    Acta Crystallogr D Struct Biol; 2021 Aug; 77(Pt 8):1077-1083. PubMed ID: 34342280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-Resolved Cryo-electron Microscopy Using a Microfluidic Chip.
    Kaledhonkar S; Fu Z; White H; Frank J
    Methods Mol Biol; 2018; 1764():59-71. PubMed ID: 29605908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Opportunities Created by Single-Particle Cryo-EM: The Mapping of Conformational Space.
    Frank J
    Biochemistry; 2018 Feb; 57(6):888. PubMed ID: 29368918
    [No Abstract]   [Full Text] [Related]  

  • 16. The impact of recent improvements in cryo-electron microscopy technology on the understanding of bacterial ribosome assembly.
    Razi A; Britton RA; Ortega J
    Nucleic Acids Res; 2017 Feb; 45(3):1027-1040. PubMed ID: 28180306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Need for Speed: Examining Protein Behavior during CryoEM Grid Preparation at Different Timescales.
    Klebl DP; Gravett MSC; Kontziampasis D; Wright DJ; Bon RS; Monteiro DCF; Trebbin M; Sobott F; White HD; Darrow MC; Thompson RF; Muench SP
    Structure; 2020 Nov; 28(11):1238-1248.e4. PubMed ID: 32814033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosomes and cryo-EM: a duet.
    Brown A; Shao S
    Curr Opin Struct Biol; 2018 Oct; 52():1-7. PubMed ID: 30015201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryo-electron microscopy as an investigative tool: the ribosome as an example.
    Frank J
    Bioessays; 2001 Aug; 23(8):725-32. PubMed ID: 11494321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the ribosome structure to a resolution of 2.5 Å by single-particle cryo-EM.
    Liu Z; Gutierrez-Vargas C; Wei J; Grassucci RA; Sun M; Espina N; Madison-Antenucci S; Tong L; Frank J
    Protein Sci; 2017 Jan; 26(1):82-92. PubMed ID: 27750394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.