These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 2579856)

  • 1. Generation of the electrochemical potential of Na+ by the Na+-motive NADH oxidase in inverted membrane vesicles of Vibrio alginolyticus.
    Tokuda H; Udagawa T; Unemoto T
    FEBS Lett; 1985 Apr; 183(1):95-8. PubMed ID: 2579856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of Na+ electrochemical potential by the Na+-motive NADH oxidase and Na+/H+ antiport system of a moderately halophilic Vibrio costicola.
    Udagawa T; Unemoto T; Tokuda H
    J Biol Chem; 1986 Feb; 261(6):2616-22. PubMed ID: 3005258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solubilization and reconstitution of the Na+-motive NADH oxidase activity from the marine bacterium Vibrio alginolyticus.
    Tokuda H
    FEBS Lett; 1984 Oct; 176(1):125-8. PubMed ID: 6092131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na+ is translocated at NADH:quinone oxidoreductase segment in the respiratory chain of Vibrio alginolyticus.
    Tokuda H; Unemoto T
    J Biol Chem; 1984 Jun; 259(12):7785-90. PubMed ID: 6736026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The sodium cycle. I. Na+-dependent motility and modes of membrane energization in the marine alkalotolerant vibrio Alginolyticus.
    Dibrov PA; Kostryko VA; Lazarova RL; Skulachev VP; Smirnova IA
    Biochim Biophys Acta; 1986 Jul; 850(3):449-57. PubMed ID: 2425848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel aerobic respiratory chain-linked NADH oxidase system in Zymomonas mobilis.
    Kim YJ; Song KB; Rhee SK
    J Bacteriol; 1995 Sep; 177(17):5176-8. PubMed ID: 7665502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na+-dependent activation of NADH oxidase in membrane fractions from halophilic Vibrio alginolyticus and V. costicolus.
    Unemoto T; Hayashi M; Hayashi M
    J Biochem; 1977 Nov; 82(5):1389-95. PubMed ID: 591506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Na(+)-motive respiratory chain of marine bacteria.
    Tokuda H; Unemoto T
    Microbiol Sci; 1985; 2(3):65-6, 69-71. PubMed ID: 2856376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium translocation by NADH oxidase of Vibrio alginolyticus: isolation and characterization of the sodium pump-defective mutants.
    Tokuda H
    Methods Enzymol; 1986; 125():520-30. PubMed ID: 3713539
    [No Abstract]   [Full Text] [Related]  

  • 10. Properties of respiratory chain-linked Na(+)-independent NADH-quinone reductase in a marine Vibrio alginolyticus.
    Hayashi M; Miyoshi T; Sato M; Unemoto T
    Biochim Biophys Acta; 1992 Feb; 1099(2):145-51. PubMed ID: 1543699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory activity in Listeria monocytogenes.
    Patchett RA; Kelly AF; Kroll RG
    FEMS Microbiol Lett; 1991 Feb; 62(1):95-8. PubMed ID: 1903352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ATP-driven primary Na+ pump in subcellular vesicles of Vibrio alginolyticus.
    Dibrov PA; Skulachev VP; Sokolov MV; Verkhovskaya ML
    FEBS Lett; 1988 Jun; 233(2):355-8. PubMed ID: 2968282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic properties of the membrane-bound NADH oxidase system in the aerobic respiratory chain of Bacillus cereus.
    Kim MS; Kim YJ
    J Biochem Mol Biol; 2004 Nov; 37(6):753-6. PubMed ID: 15607037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The H(+)-motive and Na(+)-motive respiratory chains in Bacillus FTU subcellular vesicles.
    Kostyrko VA; Semeykina AL; Skulachev VP; Smirnova IA; Vaghina ML; Verkhovskaya ML
    Eur J Biochem; 1991 Jun; 198(2):527-34. PubMed ID: 1645662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic and energetic properties of the aerobic respiratory chain-linked NADH oxidase system in the marine bacterium Pseudomonas nautica.
    Cho KH; Kim YJ
    Mol Cells; 2000 Aug; 10(4):432-6. PubMed ID: 10987141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence quenching studies on the characterization of energy generated at the NADH:quinone oxidoreductase and quinol oxidase segments of marine bacteria.
    Kim YJ; Mizushima S; Tokuda H
    J Biochem; 1991 Apr; 109(4):616-21. PubMed ID: 1907969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between the nitrate and oxygen respiratory systems in membrane vesicles of Escherichia coli K-12. Effect of 2-N-heptyl-4-hydroxyquinoline-N-oxide and ultraviolet light.
    Sánchez Crispín JA; Dubourdieu M; Chippaux M; Puig J
    Acta Cient Venez; 1983; 34(5-6):329-35. PubMed ID: 6399969
    [No Abstract]   [Full Text] [Related]  

  • 18. The plasma membrane NADH oxidase of HeLa cells has hydroquinone oxidase activity.
    Kishi T; Morré DM; Morré DJ
    Biochim Biophys Acta; 1999 May; 1412(1):66-77. PubMed ID: 10354495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequencing and preliminary characterization of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio harveyi.
    Zhou W; Bertsova YV; Feng B; Tsatsos P; Verkhovskaya ML; Gennis RB; Bogachev AV; Barquera B
    Biochemistry; 1999 Dec; 38(49):16246-52. PubMed ID: 10587447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADH: quinone oxidoreductase as a site of Na+-dependent activation in the respiratory chain of marine Vibrio alginolyticus.
    Unemoto T; Hayashi M
    J Biochem; 1979 Jun; 85(6):1461-7. PubMed ID: 457642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.