BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 25798712)

  • 1. Directing energy transport in organic photovoltaic cells using interfacial exciton gates.
    Menke SM; Mullenbach TK; Holmes RJ
    ACS Nano; 2015 Apr; 9(4):4543-52. PubMed ID: 25798712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy-cascade organic photovoltaic devices incorporating a host-guest architecture.
    Menke SM; Holmes RJ
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2912-8. PubMed ID: 25611130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoscopic features of charge generation in organic semiconductors.
    Savoie BM; Jackson NE; Chen LX; Marks TJ; Ratner MA
    Acc Chem Res; 2014 Nov; 47(11):3385-94. PubMed ID: 25051395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yield of exciton dissociation in a donor-acceptor photovoltaic junction.
    Li G; Nitzan A; Ratner MA
    Phys Chem Chem Phys; 2012 Nov; 14(41):14270-6. PubMed ID: 22955347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-dimensional exciton diffusion in perylene bisimide aggregates.
    Marciniak H; Li XQ; Würthner F; Lochbrunner S
    J Phys Chem A; 2011 Feb; 115(5):648-54. PubMed ID: 21192672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Singlet exciton fission photovoltaics.
    Lee J; Jadhav P; Reusswig PD; Yost SR; Thompson NJ; Congreve DN; Hontz E; Van Voorhis T; Baldo MA
    Acc Chem Res; 2013 Jun; 46(6):1300-11. PubMed ID: 23611026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exciton Diffusion in Conjugated Polymers: From Fundamental Understanding to Improvement in Photovoltaic Conversion Efficiency.
    Tamai Y; Ohkita H; Benten H; Ito S
    J Phys Chem Lett; 2015 Sep; 6(17):3417-28. PubMed ID: 26269208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steric control of the donor/acceptor interface: implications in organic photovoltaic charge generation.
    Holcombe TW; Norton JE; Rivnay J; Woo CH; Goris L; Piliego C; Griffini G; Sellinger A; Brédas JL; Salleo A; Fréchet JM
    J Am Chem Soc; 2011 Aug; 133(31):12106-14. PubMed ID: 21688785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optoelectronic and charge transport properties at organic-organic semiconductor interfaces: comparison between polyfluorene-based polymer blend and copolymer.
    Kim JS; Lu L; Sreearunothai P; Seeley A; Yim KH; Petrozza A; Murphy CE; Beljonne D; Cornil J; Friend RH
    J Am Chem Soc; 2008 Oct; 130(39):13120-31. PubMed ID: 18767836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Exciton Diffusion Coefficients in Fused Ring Electron Acceptor Films.
    Chandrabose S; Chen K; Barker AJ; Sutton JJ; Prasad SKK; Zhu J; Zhou J; Gordon KC; Xie Z; Zhan X; Hodgkiss JM
    J Am Chem Soc; 2019 May; 141(17):6922-6929. PubMed ID: 30964678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limitations and Perspectives on Triplet-Material-Based Organic Photovoltaic Devices.
    Jin Y; Zhang Y; Liu Y; Xue J; Li W; Qiao J; Zhang F
    Adv Mater; 2019 May; 31(22):e1900690. PubMed ID: 30957919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Annealing on Exciton Diffusion in a High Performance Small Molecule Organic Photovoltaic Material.
    Long Y; Hedley GJ; Ruseckas A; Chowdhury M; Roland T; Serrano LA; Cooke G; Samuel IDW
    ACS Appl Mater Interfaces; 2017 May; 9(17):14945-14952. PubMed ID: 28358189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of organic/organic interfaces in organic light-emitting devices due to polaron-exciton interactions.
    Wang Q; Aziz H
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8733-9. PubMed ID: 23937296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Molecular Organization on Exciton Diffusion in Photosensitive Single-Crystal Halogenated Perylenediimides Charge Transfer Interfaces.
    Pinto RM; Gouveia W; Maçôas EM; Santos IC; Raja S; Baleizão C; Alves H
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27720-9. PubMed ID: 26599347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast exciton dissociation followed by nongeminate charge recombination in PCDTBT:PCBM photovoltaic blends.
    Etzold F; Howard IA; Mauer R; Meister M; Kim TD; Lee KS; Baek NS; Laquai F
    J Am Chem Soc; 2011 Jun; 133(24):9469-79. PubMed ID: 21553906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical interfaces in organic solar cells and their influence on the open-circuit voltage.
    Potscavage WJ; Sharma A; Kippelen B
    Acc Chem Res; 2009 Nov; 42(11):1758-67. PubMed ID: 19708653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailored exciton diffusion in organic photovoltaic cells for enhanced power conversion efficiency.
    Menke SM; Luhman WA; Holmes RJ
    Nat Mater; 2013 Feb; 12(2):152-7. PubMed ID: 23142837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic photovoltaics: elucidating the ultra-fast exciton dissociation mechanism in disordered materials.
    Heitzer HM; Savoie BM; Marks TJ; Ratner MA
    Angew Chem Int Ed Engl; 2014 Jul; 53(29):7456-60. PubMed ID: 24829165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.