These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Role of rain intensity and soil colloids in the retention of surfactant-stabilized silver nanoparticles in soil. Makselon J; Siebers N; Meier F; Vereecken H; Klumpp E Environ Pollut; 2018 Jul; 238():1027-1034. PubMed ID: 29449114 [TBL] [Abstract][Full Text] [Related]
3. Asymmetric Flow-Field Flow Fractionation Hyphenated ICP-MS as an Alternative to Cloud Point Extraction for Quantification of Silver Nanoparticles and Silver Speciation: Application for Nanoparticles with a Protein Corona. Mudalige TK; Qu H; Linder SW Anal Chem; 2015 Jul; 87(14):7395-401. PubMed ID: 26095720 [TBL] [Abstract][Full Text] [Related]
4. Characterization of Silver Nanoparticles under Environmentally Relevant Conditions Using Asymmetrical Flow Field-Flow Fractionation (AF4). Jang MH; Lee S; Hwang YS PLoS One; 2015; 10(11):e0143149. PubMed ID: 26575993 [TBL] [Abstract][Full Text] [Related]
5. Silver nanoparticle behaviour in lake water depends on their surface coating. Jiménez-Lamana J; Slaveykova VI Sci Total Environ; 2016 Dec; 573():946-953. PubMed ID: 27599058 [TBL] [Abstract][Full Text] [Related]
6. Characterization of colloidal Fe from soils using field-flow fractionation and Fe K-edge X-ray absorption spectroscopy. Regelink IC; Voegelin A; Weng L; Koopmans GF; Comans RN Environ Sci Technol; 2014 Apr; 48(8):4307-16. PubMed ID: 24601526 [TBL] [Abstract][Full Text] [Related]
7. Trophic transfer of citrate, PVP coated silver nanomaterials, and silver ions in a paddy microcosm. Park HG; Kim JI; Chang KH; Lee BC; Eom IC; Kim P; Nam DH; Yeo MK Environ Pollut; 2018 Apr; 235():435-445. PubMed ID: 29310087 [TBL] [Abstract][Full Text] [Related]
9. Preparative field flow fractionation for complex environmental samples: online detection by inductively coupled plasma mass spectrometry and offline detection by gas chromatography with flame ionization. Nischwitz V; Gottselig N; Braun M J Chromatogr A; 2020 Nov; 1632():461581. PubMed ID: 33068828 [TBL] [Abstract][Full Text] [Related]
10. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS. Loeschner K; Navratilova J; Købler C; Mølhave K; Wagner S; von der Kammer F; Larsen EH Anal Bioanal Chem; 2013 Oct; 405(25):8185-95. PubMed ID: 23887279 [TBL] [Abstract][Full Text] [Related]
11. Colloidal mobilization from soil and transport of uranium in (sub)-surface waters. Harguindeguy S; Crançon P; Potin Gautier M; Pointurier F; Lespes G Environ Sci Pollut Res Int; 2019 Feb; 26(6):5294-5304. PubMed ID: 29998447 [TBL] [Abstract][Full Text] [Related]
12. A systematic evaluation of Flow Field Flow Fractionation and single-particle ICP-MS to obtain the size distribution of organo-mineral iron oxyhydroxide colloids. Moens C; Waegeneers N; Fritzsche A; Nobels P; Smolders E J Chromatogr A; 2019 Aug; 1599():203-214. PubMed ID: 31047657 [TBL] [Abstract][Full Text] [Related]
13. Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles. Loeschner K; Navratilova J; Legros S; Wagner S; Grombe R; Snell J; von der Kammer F; Larsen EH J Chromatogr A; 2013 Jan; 1272():116-25. PubMed ID: 23261297 [TBL] [Abstract][Full Text] [Related]
14. Size and mass determination of silver nanoparticles in an aqueous matrix using asymmetric flow field flow fractionation coupled to inductively coupled plasma mass spectrometer and ultraviolet-visible detectors. Geiss O; Cascio C; Gilliland D; Franchini F; Barrero-Moreno J J Chromatogr A; 2013 Dec; 1321():100-8. PubMed ID: 24238704 [TBL] [Abstract][Full Text] [Related]
15. In-house validation of a method for determination of silver nanoparticles in chicken meat based on asymmetric flow field-flow fractionation and inductively coupled plasma mass spectrometric detection. Loeschner K; Navratilova J; Grombe R; Linsinger TP; Købler C; Mølhave K; Larsen EH Food Chem; 2015 Aug; 181():78-84. PubMed ID: 25794724 [TBL] [Abstract][Full Text] [Related]
16. Detection and characterization of silver nanoparticles in aqueous matrices using asymmetric-flow field flow fractionation with inductively coupled plasma mass spectrometry. Hoque ME; Khosravi K; Newman K; Metcalfe CD J Chromatogr A; 2012 Apr; 1233():109-15. PubMed ID: 22381889 [TBL] [Abstract][Full Text] [Related]
17. Influence of soil porewater properties on the fate and toxicity of silver nanoparticles to Caenorhabditis elegans. Schultz CL; Lahive E; Lawlor A; Crossley A; Puntes V; Unrine JM; Svendsen C; Spurgeon DJ Environ Toxicol Chem; 2018 Oct; 37(10):2609-2618. PubMed ID: 30003578 [TBL] [Abstract][Full Text] [Related]
18. New insights into the enhanced transport of uncoated and polyvinylpyrrolidone-coated silver nanoparticles in saturated porous media by dissolved black carbons. Wang K; Zhang Y; Sun B; Yang Y; Xiao B; Zhu L Chemosphere; 2021 Nov; 283():131159. PubMed ID: 34144287 [TBL] [Abstract][Full Text] [Related]
19. AF4-UV-ICP-MS for detection and quantification of silver nanoparticles in seafood after enzymatic hydrolysis. Taboada-López MV; Bartczak D; Cuello-Núñez S; Goenaga-Infante H; Bermejo-Barrera P; Moreda-Piñeiro A Talanta; 2021 Sep; 232():122504. PubMed ID: 34074453 [TBL] [Abstract][Full Text] [Related]
20. Transport and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impacts of input concentration, grain size and flow rate. Hou J; Zhang M; Wang P; Wang C; Miao L; Xu Y; You G; Lv B; Yang Y; Liu Z Water Res; 2017 Dec; 127():86-95. PubMed ID: 29035769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]