BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 25799099)

  • 1. Design and characterization of a membrane protein unfolding platform in lipid bilayers.
    Nadeau VG; Gao A; Deber CM
    PLoS One; 2015; 10(3):e0120253. PubMed ID: 25799099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the extracellular loop in the folding of a CFTR transmembrane helical hairpin.
    Wehbi H; Rath A; Glibowicka M; Deber CM
    Biochemistry; 2007 Jun; 46(24):7099-106. PubMed ID: 17516627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for misfolding at a disease phenotypic position in CFTR: comparison of TM3/4 helix-loop-helix constructs with TM4 peptides.
    Mulvihill CM; Deber CM
    Biochim Biophys Acta; 2012 Jan; 1818(1):49-54. PubMed ID: 21996038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loop sequence dictates the secondary structure of a human membrane protein hairpin.
    Nadeau VG; Deber CM
    Biochemistry; 2013 Apr; 52(14):2419-26. PubMed ID: 23488803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positional dependence of non-native polar mutations on folding of CFTR helical hairpins.
    Wehbi H; Gasmi-Seabrook G; Choi MY; Deber CM
    Biochim Biophys Acta; 2008 Jan; 1778(1):79-87. PubMed ID: 17949679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interhelical packing in detergent micelles. Folding of a cystic fibrosis transmembrane conductance regulator construct.
    Therien AG; Deber CM
    J Biol Chem; 2002 Feb; 277(8):6067-72. PubMed ID: 11748233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-native interhelical hydrogen bonds in the cystic fibrosis transmembrane conductance regulator domain modulated by polar mutations.
    Choi MY; Cardarelli L; Therien AG; Deber CM
    Biochemistry; 2004 Jun; 43(25):8077-83. PubMed ID: 15209503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural effects of extracellular loop mutations in CFTR helical hairpins.
    Chang YH; Stone TA; Chin S; Glibowicka M; Bear CE; Deber CM
    Biochim Biophys Acta Biomembr; 2018 May; 1860(5):1092-1098. PubMed ID: 29307731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmembrane domain of cystic fibrosis transmembrane conductance regulator: design, characterization, and secondary structure of synthetic peptides m1-m6.
    Wigley WC; Vijayakumar S; Jones JD; Slaughter C; Thomas PJ
    Biochemistry; 1998 Jan; 37(3):844-53. PubMed ID: 9454574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interhelical hydrogen bonds in the CFTR membrane domain.
    Therien AG; Grant FE; Deber CM
    Nat Struct Biol; 2001 Jul; 8(7):597-601. PubMed ID: 11427889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that the translocon may function as a hydropathy partitioning filter.
    Mulvihill CM; Deber CM
    Biochim Biophys Acta; 2010 Oct; 1798(10):1995-8. PubMed ID: 20646997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence hydropathy dominates membrane protein response to detergent solubilization.
    Nadeau VG; Rath A; Deber CM
    Biochemistry; 2012 Aug; 51(31):6228-37. PubMed ID: 22779403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring transmembrane helix interaction strengths in lipid bilayers using steric trapping.
    Hong H; Chang YC; Bowie JU
    Methods Mol Biol; 2013; 1063():37-56. PubMed ID: 23975771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid bilayer composition modulates the unfolding free energy of a knotted α-helical membrane protein.
    Sanders MR; Findlay HE; Booth PJ
    Proc Natl Acad Sci U S A; 2018 Feb; 115(8):E1799-E1808. PubMed ID: 29432185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrene fluorescence analysis offers new insights into the conformation of the lipoprotein-binding domain of human apolipoprotein E.
    Patel AB; Khumsupan P; Narayanaswami V
    Biochemistry; 2010 Mar; 49(8):1766-75. PubMed ID: 20073510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and purification of two hydrophobic double-spanning membrane proteins derived from the cystic fibrosis transmembrane conductance regulator.
    Therien AG; Glibowicka M; Deber CM
    Protein Expr Purif; 2002 Jun; 25(1):81-6. PubMed ID: 12071702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid bilayer topology of the transmembrane alpha-helix of M13 Major coat protein and bilayer polarity profile by site-directed fluorescence spectroscopy.
    Koehorst RB; Spruijt RB; Vergeldt FJ; Hemminga MA
    Biophys J; 2004 Sep; 87(3):1445-55. PubMed ID: 15345527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of the transmembrane orientation and interhelical interactions within membranes by hydrophobic helix length.
    Ren J; Lew S; Wang J; London E
    Biochemistry; 1999 May; 38(18):5905-12. PubMed ID: 10231543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detergent binding explains anomalous SDS-PAGE migration of membrane proteins.
    Rath A; Glibowicka M; Nadeau VG; Chen G; Deber CM
    Proc Natl Acad Sci U S A; 2009 Feb; 106(6):1760-5. PubMed ID: 19181854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural cues involved in endoplasmic reticulum degradation of G85E and G91R mutant cystic fibrosis transmembrane conductance regulator.
    Xiong X; Bragin A; Widdicombe JH; Cohn J; Skach WR
    J Clin Invest; 1997 Sep; 100(5):1079-88. PubMed ID: 9276724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.