These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 25799253)
21. Cheese whey as substrate of batch hydrogen production: effect of temperature and addition of buffer. Muñoz-Páez KM; Poggi-Varaldo HM; García-Mena J; Ponce-Noyola MT; Ramos-Valdivia AC; Barrera-Cortés J; Robles-González IV; Ruiz-Ordáz N; Villa-Tanaca L; Rinderknecht-Seijas N Waste Manag Res; 2014 May; 32(5):434-40. PubMed ID: 24821747 [TBL] [Abstract][Full Text] [Related]
22. Fermentative hydrogen gas production using biosolids pellets as the inoculum source. Kalogo Y; Bagley DM Bioresour Technol; 2008 Feb; 99(3):540-6. PubMed ID: 17336058 [TBL] [Abstract][Full Text] [Related]
23. Continuous biohydrogen production from waste bread by anaerobic sludge. Han W; Huang J; Zhao H; Li Y Bioresour Technol; 2016 Jul; 212():1-5. PubMed ID: 27065225 [TBL] [Abstract][Full Text] [Related]
24. Biohydrogen production from used diapers: Evaluation of effect of temperature and substrate conditioning. Sotelo-Navarro PX; Poggi-Varaldo HM; Turpin-Marion SJ; Vázquez-Morillas A; Beltrán-Villavicencio M; Espinosa-Valdemar RM Waste Manag Res; 2017 Mar; 35(3):267-275. PubMed ID: 28097956 [TBL] [Abstract][Full Text] [Related]
25. Biogenic hydrogen conversion of de-oiled jatropha waste via anaerobic sequencing batch reactor operation: process performance, microbial insights, and CO2 reduction efficiency. Kumar G; Lin CY ScientificWorldJournal; 2014; 2014():946503. PubMed ID: 24672398 [TBL] [Abstract][Full Text] [Related]
26. The influence of total solids content and initial pH on batch biohydrogen production by solid substrate fermentation of agroindustrial wastes. Robledo-Narváez PN; Muñoz-Páez KM; Poggi-Varaldo HM; Ríos-Leal E; Calva-Calva G; Ortega-Clemente LA; Rinderknecht-Seijas N; Estrada-Vázquez C; Ponce-Noyola MT; Salazar-Montoya JA J Environ Manage; 2013 Oct; 128():126-37. PubMed ID: 23732191 [TBL] [Abstract][Full Text] [Related]
27. Application of nanoparticles to increase biological hydrogen production: the difference in metabolic pathways in batch and continuous reactors. Moura AGL; Rabelo CABS; Silva EL; Varesche MBA Environ Technol; 2024 Jun; 45(15):3095-3103. PubMed ID: 37129278 [TBL] [Abstract][Full Text] [Related]
28. Control of fermentation duration and pH to orient biochemicals and biofuels production from cheese whey. Asunis F; De Gioannis G; Isipato M; Muntoni A; Polettini A; Pomi R; Rossi A; Spiga D Bioresour Technol; 2019 Oct; 289():121722. PubMed ID: 31323727 [TBL] [Abstract][Full Text] [Related]
29. Hydrogen and organic acid production from dark fermentation of cheese whey without buffers under mesophilic condition. Ribeiro JC; Mota VT; de Oliveira VM; Zaiat M J Environ Manage; 2022 Feb; 304():114253. PubMed ID: 35021584 [TBL] [Abstract][Full Text] [Related]
30. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation. Kongjan P; Min B; Angelidaki I Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170 [TBL] [Abstract][Full Text] [Related]
31. Effect of the organic loading rate on biogas composition in continuous fermentative hydrogen production. Spagni A; Casu S; Farina R J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Oct; 45(12):1475-81. PubMed ID: 20700847 [TBL] [Abstract][Full Text] [Related]
32. High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring. Koskinen PE; Lay CH; Puhakka JA; Lin PJ; Wu SY; Orlygsson J; Lin CY Biotechnol Bioeng; 2008 Nov; 101(4):665-78. PubMed ID: 18814296 [TBL] [Abstract][Full Text] [Related]
33. Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe Reddy K; Nasr M; Kumari S; Kumar S; Gupta SK; Enitan AM; Bux F Environ Sci Pollut Res Int; 2017 Mar; 24(9):8790-8804. PubMed ID: 28213710 [TBL] [Abstract][Full Text] [Related]
34. Poultry slaughterhouse anaerobic ponds as a source of inoculum for biohydrogen production. Cripa FB; Arantes MK; Sequinel R; Fiorini A; Rosado FR; Alves HJ J Biosci Bioeng; 2020 Jan; 129(1):77-85. PubMed ID: 31591025 [TBL] [Abstract][Full Text] [Related]
35. [Effects of substrate species on fermentative hydrogen production]. Tang GL; Tang QQ; Huang J; Liu GQ; Sun ZJ Huan Jing Ke Xue; 2008 Aug; 29(8):2345-9. PubMed ID: 18839598 [TBL] [Abstract][Full Text] [Related]
36. Performance comparison of a continuous-flow stirred-tank reactor and an anaerobic sequencing batch reactor for fermentative hydrogen production depending on substrate concentration. Kim SH; Han SK; Shin HS Water Sci Technol; 2005; 52(10-11):23-9. PubMed ID: 16459773 [TBL] [Abstract][Full Text] [Related]
37. Effect of Biohythane Production from Distillery Spent Wash with Addition of Landfill Leachate and Sewage Wastewater. Saranga VK; Kumar PK; Verma K; Bhagawan D; Himabindu V; Narasu ML Appl Biochem Biotechnol; 2020 Jan; 190(1):30-43. PubMed ID: 31297754 [TBL] [Abstract][Full Text] [Related]
38. Improvement of biohydrogen production using a reduced pressure fermentation. Kisielewska M; Dębowski M; Zieliński M Bioprocess Biosyst Eng; 2015 Oct; 38(10):1925-33. PubMed ID: 26111633 [TBL] [Abstract][Full Text] [Related]
39. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
40. Characteristics of Biohydrogen Production and Performance of Hydrogen-Producing Acetogen by Increasing Normal Molasses Wastewater Proportion in Anaerobic Baffled Reactor. Gu X; Wang Y; Li H; Li J; Wang S Archaea; 2020; 2020():8885662. PubMed ID: 32612454 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]