These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25799519)

  • 21. Formation of chiral branched nanowires by the Eshelby Twist.
    Zhu J; Peng H; Marshall AF; Barnett DM; Nix WD; Cui Y
    Nat Nanotechnol; 2008 Aug; 3(8):477-81. PubMed ID: 18685634
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computer simulation of the epitaxy of surfactant-templated inorganic nanomaterials on patterned surfaces.
    Li Z; Zhang X; Chen B
    Langmuir; 2009 Feb; 25(4):1998-2006. PubMed ID: 19154128
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bottom-up fabrication of graphene nanostructures on Ru(1010).
    Song J; Zhang HJ; Cai Y; Zhang Y; Bao S; He P
    Nanotechnology; 2016 Feb; 27(5):055602. PubMed ID: 26671535
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of organic ligands, electrostatic and magnetic interactions in formation of colloidal and interfacial inorganic nanostructures.
    Khomutov GB; Koksharov YA
    Adv Colloid Interface Sci; 2006 Sep; 122(1-3):119-47. PubMed ID: 16887093
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Layer-by-layer self-assembly for constructing a graphene/platinum nanoparticle three-dimensional hybrid nanostructure using ionic liquid as a linker.
    Zhu C; Guo S; Zhai Y; Dong S
    Langmuir; 2010 May; 26(10):7614-8. PubMed ID: 20073489
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring the interaction between graphene derivatives and metal ions as a key step towards graphene-inorganic nanohybrids.
    Wang B; Song Q; Luo B; Li X; Liang M; Feng X; Wagner M; Müllen K; Zhi L
    Chem Asian J; 2013 Feb; 8(2):410-3. PubMed ID: 23161524
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Device-oriented graphene nanopatterning by mussel-inspired directed block copolymer self-assembly.
    Park S; Yun JM; Maiti UN; Moon HS; Jin HM; Kim SO
    Nanotechnology; 2014 Jan; 25(1):014008. PubMed ID: 24334527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aggregate nanostructures of organic molecular materials.
    Liu H; Xu J; Li Y; Li Y
    Acc Chem Res; 2010 Dec; 43(12):1496-508. PubMed ID: 20942417
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atomistic Insights into the Oriented Attachment of Tunnel-Based Oxide Nanostructures.
    Yuan Y; Wood SM; He K; Yao W; Tompsett D; Lu J; Nie A; Islam MS; Shahbazian-Yassar R
    ACS Nano; 2016 Jan; 10(1):539-48. PubMed ID: 26649473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluorinated Graphene Enables the Growth of Inorganic Thin Films by Chemical Bath Deposition on Otherwise Inert Substrates.
    Lee WK; Hernández SC; Robinson JT; Walton SG; Sheehan PE
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):677-683. PubMed ID: 27977931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Virus-templated iridium oxide-gold hybrid nanowires for electrochromic application.
    Nam YS; Park H; Magyar AP; Yun DS; Pollom TS; Belcher AM
    Nanoscale; 2012 Jun; 4(11):3405-9. PubMed ID: 22572920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. One-dimensional self-assembly of planar pi-conjugated molecules: adaptable building blocks for organic nanodevices.
    Zang L; Che Y; Moore JS
    Acc Chem Res; 2008 Dec; 41(12):1596-608. PubMed ID: 18616298
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The High Anisotropy of the Epitaxial Growth of the Well-Aligned Sb
    Liu J; Li M; Liu M; Cai H; Lin Y; Zhou Y; Huang Z; Lai F
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):9909-9917. PubMed ID: 32009379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inorganic nanostructures grown on graphene layers.
    Park WI; Lee CH; Lee JM; Kim NJ; Yi GC
    Nanoscale; 2011 Sep; 3(9):3522-33. PubMed ID: 21785807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gapped ferromagnetic graphene nanoribbons.
    Hou D; Wei J; Xie S
    Phys Chem Chem Phys; 2011 Aug; 13(29):13202-6. PubMed ID: 21706114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growing TiO2 nanowires on the surface of graphene sheets in supercritical CO2: characterization and photoefficiency.
    Farhangi N; Medina-Gonzalez Y; Chowdhury RR; Charpentier PA
    Nanotechnology; 2012 Jul; 23(29):294005. PubMed ID: 22743625
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Passivation of metal surface states: microscopic origin for uniform monolayer graphene by low temperature chemical vapor deposition.
    Jeon I; Yang H; Lee SH; Heo J; Seo DH; Shin J; Chung UI; Kim ZG; Chung HJ; Seo S
    ACS Nano; 2011 Mar; 5(3):1915-20. PubMed ID: 21309604
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-temperature vapour-liquid-solid (VLS) growth of vertically aligned silicon oxide nanowires using concurrent ion bombardment.
    Bettge M; MacLaren S; Burdin S; Wen JG; Abraham D; Petrov I; Sammann E
    Nanotechnology; 2009 Mar; 20(11):115607. PubMed ID: 19420447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.