These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 25799944)
1. Structural insight into the oxidation of sinapic acid by CotA laccase. Xie T; Liu Z; Liu Q; Wang G J Struct Biol; 2015 May; 190(2):155-61. PubMed ID: 25799944 [TBL] [Abstract][Full Text] [Related]
2. Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Koschorreck K; Richter SM; Ene AB; Roduner E; Schmid RD; Urlacher VB Appl Microbiol Biotechnol; 2008 May; 79(2):217-24. PubMed ID: 18330561 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of CotA laccase complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) at a novel binding site. Liu Z; Xie T; Zhong Q; Wang G Acta Crystallogr F Struct Biol Commun; 2016 Apr; 72(Pt 4):328-35. PubMed ID: 27050268 [TBL] [Abstract][Full Text] [Related]
4. Expression of CotA laccase in Pichia pastoris and its electrocatalytic sensing application for hydrogen peroxide. Fan L; Zhao M; Wang Y Appl Microbiol Biotechnol; 2015 Nov; 99(22):9483-93. PubMed ID: 26062535 [TBL] [Abstract][Full Text] [Related]
5. Directed evolution of CotA laccase for increased substrate specificity using Bacillus subtilis spores. Gupta N; Farinas ET Protein Eng Des Sel; 2010 Aug; 23(8):679-82. PubMed ID: 20551082 [TBL] [Abstract][Full Text] [Related]
6. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. Martins LO; Soares CM; Pereira MM; Teixeira M; Costa T; Jones GH; Henriques AO J Biol Chem; 2002 May; 277(21):18849-59. PubMed ID: 11884407 [TBL] [Abstract][Full Text] [Related]
7. The role of Glu498 in the dioxygen reactivity of CotA-laccase from Bacillus subtilis. Chen Z; Durão P; Silva CS; Pereira MM; Todorovic S; Hildebrandt P; Bento I; Lindley PF; Martins LO Dalton Trans; 2010 Mar; 39(11):2875-82. PubMed ID: 20200715 [TBL] [Abstract][Full Text] [Related]
8. Direct analysis by time-of-flight secondary ion mass spectrometry reveals action of bacterial laccase-mediator systems on both hardwood and softwood samples. Goacher RE; Braham EJ; Michienzi CL; Flick RM; Yakunin AF; Master ER Physiol Plant; 2018 Sep; 164(1):5-16. PubMed ID: 29286544 [TBL] [Abstract][Full Text] [Related]
9. Oxidation of polycyclic aromatic hydrocarbons using Bacillus subtilis CotA with high laccase activity and copper independence. Zeng J; Zhu Q; Wu Y; Lin X Chemosphere; 2016 Apr; 148():1-7. PubMed ID: 26784443 [TBL] [Abstract][Full Text] [Related]
10. Bacillus pumilus laccase: a heat stable enzyme with a wide substrate spectrum. Reiss R; Ihssen J; Thöny-Meyer L BMC Biotechnol; 2011 Jan; 11():9. PubMed ID: 21266052 [TBL] [Abstract][Full Text] [Related]
11. Substrate and dioxygen binding to the endospore coat laccase from Bacillus subtilis. Enguita FJ; Marçal D; Martins LO; Grenha R; Henriques AO; Lindley PF; Carrondo MA J Biol Chem; 2004 May; 279(22):23472-6. PubMed ID: 14764581 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of catalysis and functional expression of a bacterial laccase by single amino acid replacement. Nasoohi N; Khajeh K; Mohammadian M; Ranjbar B Int J Biol Macromol; 2013 Sep; 60():56-61. PubMed ID: 23707861 [TBL] [Abstract][Full Text] [Related]
13. Hydrogen Peroxide-Resistant CotA and YjqC of Bacillus altitudinis Spores Are a Promising Biocatalyst for Catalyzing Reduction of Sinapic Acid and Sinapine in Rapeseed Meal. Zhang Y; Li X; Hao Z; Xi R; Cai Y; Liao X PLoS One; 2016; 11(6):e0158351. PubMed ID: 27362423 [TBL] [Abstract][Full Text] [Related]
14. Comparative characterization of four laccases from Trametes versicolor concerning phenolic C-C coupling and oxidation of PAHs. Koschorreck K; Richter SM; Swierczek A; Beifuss U; Schmid RD; Urlacher VB Arch Biochem Biophys; 2008 Jun; 474(1):213-9. PubMed ID: 18367094 [TBL] [Abstract][Full Text] [Related]
15. The role of Asp116 in the reductive cleavage of dioxygen to water in CotA laccase: assistance during the proton-transfer mechanism. Silva CS; Damas JM; Chen Z; Brissos V; Martins LO; Soares CM; Lindley PF; Bento I Acta Crystallogr D Biol Crystallogr; 2012 Feb; 68(Pt 2):186-93. PubMed ID: 22281748 [TBL] [Abstract][Full Text] [Related]
16. Enhanced expression of a recombinant bacterial laccase at low temperature and microaerobic conditions: purification and biochemical characterization. Mohammadian M; Fathi-Roudsari M; Mollania N; Badoei-Dalfard A; Khajeh K J Ind Microbiol Biotechnol; 2010 Aug; 37(8):863-9. PubMed ID: 20473548 [TBL] [Abstract][Full Text] [Related]
17. Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: structural, biochemical, enzymatic and stability studies. Durão P; Bento I; Fernandes AT; Melo EP; Lindley PF; Martins LO J Biol Inorg Chem; 2006 Jun; 11(4):514-26. PubMed ID: 16680453 [TBL] [Abstract][Full Text] [Related]
18. Transformation of low molecular compounds and soil humic acid by two domain laccase of Streptomyces puniceus in the presence of ferulic and caffeic acids. Trubitsina LI; Lisov AV; Belova OV; Trubitsin IV; Demin VV; Konstantinov AI; Zavarzina AG; Leontievsky AA PLoS One; 2020; 15(9):e0239005. PubMed ID: 32946485 [TBL] [Abstract][Full Text] [Related]
19. Enzymatic biotransformation of the azo dye Sudan Orange G with bacterial CotA-laccase. Pereira L; Coelho AV; Viegas CA; Santos MM; Robalo MP; Martins LO J Biotechnol; 2009 Jan; 139(1):68-77. PubMed ID: 18938200 [TBL] [Abstract][Full Text] [Related]
20. Characterization of an alkali- and halide-resistant laccase expressed in E. coli: CotA from Bacillus clausii. Brander S; Mikkelsen JD; Kepp KP PLoS One; 2014; 9(6):e99402. PubMed ID: 24915287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]