BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

953 related articles for article (PubMed ID: 25799993)

  • 21. Mapping RNA-RNA interactome and RNA structure in vivo by MARIO.
    Nguyen TC; Cao X; Yu P; Xiao S; Lu J; Biase FH; Sridhar B; Huang N; Zhang K; Zhong S
    Nat Commun; 2016 Jun; 7():12023. PubMed ID: 27338251
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNA stem-loop enhanced expression of previously non-expressible genes.
    Paulus M; Haslbeck M; Watzele M
    Nucleic Acids Res; 2004 May; 32(9):e78. PubMed ID: 15163763
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA structural analysis by evolving SHAPE chemistry.
    Spitale RC; Flynn RA; Torre EA; Kool ET; Chang HY
    Wiley Interdiscip Rev RNA; 2014; 5(6):867-81. PubMed ID: 25132067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dissecting the secondary structure of the circular RNA of a nuclear viroid in vivo: A "naked" rod-like conformation similar but not identical to that observed in vitro.
    López-Carrasco A; Flores R
    RNA Biol; 2017 Aug; 14(8):1046-1054. PubMed ID: 27574720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding the transcriptome through RNA structure.
    Wan Y; Kertesz M; Spitale RC; Segal E; Chang HY
    Nat Rev Genet; 2011 Aug; 12(9):641-55. PubMed ID: 21850044
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-wide measurement of RNA folding energies.
    Wan Y; Qu K; Ouyang Z; Kertesz M; Li J; Tibshirani R; Makino DL; Nutter RC; Segal E; Chang HY
    Mol Cell; 2012 Oct; 48(2):169-81. PubMed ID: 22981864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Vivo Mapping of Eukaryotic RNA Interactomes Reveals Principles of Higher-Order Organization and Regulation.
    Aw JG; Shen Y; Wilm A; Sun M; Lim XN; Boon KL; Tapsin S; Chan YS; Tan CP; Sim AY; Zhang T; Susanto TT; Fu Z; Nagarajan N; Wan Y
    Mol Cell; 2016 May; 62(4):603-17. PubMed ID: 27184079
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structured mRNAs regulate translation initiation by binding to the platform of the ribosome.
    Marzi S; Myasnikov AG; Serganov A; Ehresmann C; Romby P; Yusupov M; Klaholz BP
    Cell; 2007 Sep; 130(6):1019-31. PubMed ID: 17889647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural elements in the internal ribosome entry site of Plautia stali intestine virus responsible for binding with ribosomes.
    Nishiyama T; Yamamoto H; Shibuya N; Hatakeyama Y; Hachimori A; Uchiumi T; Nakashima N
    Nucleic Acids Res; 2003 May; 31(9):2434-42. PubMed ID: 12711689
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Footprinting SHAPE-eCLIP Reveals Transcriptome-wide Hydrogen Bonds at RNA-Protein Interfaces.
    Corley M; Flynn RA; Lee B; Blue SM; Chang HY; Yeo GW
    Mol Cell; 2020 Dec; 80(5):903-914.e8. PubMed ID: 33242392
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of the RNA backbone: structural analysis of riboswitches by in-line probing and selective 2'-hydroxyl acylation and primer extension.
    Wakeman CA; Winkler WC
    Methods Mol Biol; 2009; 540():173-91. PubMed ID: 19381560
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition.
    Schlundt A; Tants JN; Sattler M
    Methods; 2017 Apr; 118-119():119-136. PubMed ID: 28315749
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational prediction of RNA structural motifs involved in post-transcriptional regulatory processes.
    Rabani M; Kertesz M; Segal E
    Methods Mol Biol; 2011; 714():467-79. PubMed ID: 21431758
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterogeneous Ribosomes Preferentially Translate Distinct Subpools of mRNAs Genome-wide.
    Shi Z; Fujii K; Kovary KM; Genuth NR; Röst HL; Teruel MN; Barna M
    Mol Cell; 2017 Jul; 67(1):71-83.e7. PubMed ID: 28625553
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution.
    Wilkinson KA; Merino EJ; Weeks KM
    Nat Protoc; 2006; 1(3):1610-6. PubMed ID: 17406453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RNA SHAPE analysis in living cells.
    Spitale RC; Crisalli P; Flynn RA; Torre EA; Kool ET; Chang HY
    Nat Chem Biol; 2013 Jan; 9(1):18-20. PubMed ID: 23178934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective 2'-hydroxyl acylation analyzed by protection from exoribonuclease.
    Steen KA; Malhotra A; Weeks KM
    J Am Chem Soc; 2010 Jul; 132(29):9940-3. PubMed ID: 20597503
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NMR structures of loop B RNAs from the stem-loop IV domain of the enterovirus internal ribosome entry site: a single C to U substitution drastically changes the shape and flexibility of RNA.
    Du Z; Ulyanov NB; Yu J; Andino R; James TL
    Biochemistry; 2004 May; 43(19):5757-71. PubMed ID: 15134450
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative Visualization of the RNA Suboptimal Conformational Ensemble In Vivo.
    Woods CT; Lackey L; Williams B; Dokholyan NV; Gotz D; Laederach A
    Biophys J; 2017 Jul; 113(2):290-301. PubMed ID: 28625696
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A study of accessible motifs and RNA folding complexity.
    Wexler Y; Zilberstein C; Ziv-Ukelson M
    J Comput Biol; 2007; 14(6):856-72. PubMed ID: 17691898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 48.