BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 25800342)

  • 1. Distribution and accumulation of selenium in wild plants growing naturally in the Gumuskoy (Kutahya) mining area, Turkey.
    Sasmaz M; Akgül B; Sasmaz A
    Bull Environ Contam Toxicol; 2015 May; 94(5):598-603. PubMed ID: 25800342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mercury uptake and phytotoxicity in terrestrial plants grown naturally in the Gumuskoy (Kutahya) mining area, Turkey.
    Sasmaz M; Akgül B; Yıldırım D; Sasmaz A
    Int J Phytoremediation; 2016; 18(1):69-76. PubMed ID: 26114359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioaccumulation of thallium by the wild plants grown in soils of mining area.
    Sasmaz M; Akgul B; Yıldırım D; Sasmaz A
    Int J Phytoremediation; 2016 Nov; 18(11):1164-70. PubMed ID: 27196508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation of Cadmium by Native Plants Grown on Mining Soil.
    Palutoglu M; Akgul B; Suyarko V; Yakovenko M; Kryuchenko N; Sasmaz A
    Bull Environ Contam Toxicol; 2018 Feb; 100(2):293-297. PubMed ID: 29177694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strontium accumulation by the terrestrial and aquatic plants affected by mining and municipal wastewaters (Elazig, Turkey).
    Sasmaz M; Uslu Senel G; Obek E
    Environ Geochem Health; 2021 Jun; 43(6):2257-2270. PubMed ID: 32728950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translocation and accumulation of boron in roots and shoots of plants grown in soils of low boron concentration in Turkey's Keban Pb-Zn mining area.
    Sasmaz A
    Int J Phytoremediation; 2008; 10():302-10. PubMed ID: 19260215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand.
    Rotkittikhun P; Kruatrachue M; Chaiyarat R; Ngernsansaruay C; Pokethitiyook P; Paijitprapaporn A; Baker AJ
    Environ Pollut; 2006 Nov; 144(2):681-8. PubMed ID: 16533549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper phytoremediation potential of wild plant species growing in the mine polluted areas of Armenia.
    Ghazaryan K; Movsesyan H; Ghazaryan N; Watts BA
    Environ Pollut; 2019 Jun; 249():491-501. PubMed ID: 30928521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical speciation and bioavailability of selenium in the rhizosphere of Symphyotrichum eatonii from reclaimed mine soils.
    Oram LL; Strawn DG; Möller G
    Environ Sci Technol; 2011 Feb; 45(3):870-5. PubMed ID: 21166454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The green technology of selenium phytoremediation.
    Bañuelos GS
    Biofactors; 2001; 14(1-4):255-60. PubMed ID: 11568462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake and accumulation of phosphorus by dominant plant species growing in a phosphorus mining area.
    Xiao G; Li T; Zhang X; Yu H; Huang H; Gupta DK
    J Hazard Mater; 2009 Nov; 171(1-3):542-50. PubMed ID: 19608342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Differences of selenium uptake pattern of pakchoi and the possible mechanism when amended with selenate and selenite].
    Guo L; Man N; Liang DL; Xie JY; Liu JJ
    Huan Jing Ke Xue; 2013 Aug; 34(8):3272-9. PubMed ID: 24191579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens.
    Chen YX; Wang YP; Lin Q; Luo YM
    Environ Int; 2005 Aug; 31(6):861-6. PubMed ID: 16005516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selenium and sulfur accumulation and soil selenium dissipation in planting of four herbaceous plant species in soil contaminated with drainage sediment rich in both selenium and sulfur.
    Wu L; Guo X; Bañuelos GS
    Int J Phytoremediation; 2003; 5(1):25-40. PubMed ID: 12710233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site.
    Yoon J; Cao X; Zhou Q; Ma LQ
    Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution and transport of selenium in Yutangba, China: impact of human activities.
    Zhu J; Wang N; Li S; Li L; Su H; Liu C
    Sci Total Environ; 2008 Mar; 392(2-3):252-61. PubMed ID: 18215743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of heavy metals accumulation by spontaneous vegetation: Screening for new accumulator plant species grown in Kettara mine-Marrakech, Southern Morocco.
    Midhat L; Ouazzani N; Esshaimi M; Ouhammou A; Mandi L
    Int J Phytoremediation; 2017 Feb; 19(2):191-198. PubMed ID: 27552368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selenium in soil inhibits mercury uptake and translocation in rice (Oryza sativa L.).
    Zhang H; Feng X; Zhu J; Sapkota A; Meng B; Yao H; Qin H; Larssen T
    Environ Sci Technol; 2012 Sep; 46(18):10040-6. PubMed ID: 22916794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Dynamic Differences of Uptake and Translocation of Exogenous Selenium by Different Crops and Its Mechanism].
    Peng Q; Li Z; Liang DL; Wang MK; Guo L
    Huan Jing Ke Xue; 2017 Apr; 38(4):1667-1674. PubMed ID: 29965172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of Arsenic by Plants Growing in the Sites Strongly Contaminated by Historical Mining in the Sudetes Region of Poland.
    Dradrach A; Karczewska A; Szopka K; Lewińska K
    Int J Environ Res Public Health; 2020 May; 17(9):. PubMed ID: 32403438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.