BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 25800434)

  • 1. Effect of arginine methylation on the RNA recognition and cellular uptake of Tat-derived peptides.
    Li JH; Chiu WC; Yao YC; Cheng RP
    Bioorg Med Chem; 2015 May; 23(9):2281-6. PubMed ID: 25800434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of each guanidinium group on the RNA recognition and cellular uptake of Tat-derived peptides.
    Wu CH; Weng MH; Chang HC; Li JH; Cheng RP
    Bioorg Med Chem; 2014 Jun; 22(11):3016-20. PubMed ID: 24767816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of lysine methylation and acetylation on the RNA recognition and cellular uptake of Tat-derived peptides.
    Liu MC; Chen CY; Chiang CH; Wang WM; Cheng RP
    Bioorg Med Chem; 2016 Nov; 24(21):5047-5051. PubMed ID: 27670097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of different arginine methylations on the thermodynamics of Tat peptide binding to HIV-1 TAR RNA.
    Kumar S; Maiti S
    Biochimie; 2013 Jul; 95(7):1422-31. PubMed ID: 23541506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuating HIV Tat/TAR-mediated protein expression by exploring the side chain length of positively charged residues.
    Wu CH; Chen YP; Liu SL; Chien FC; Mou CY; Cheng RP
    Org Biomol Chem; 2015 Dec; 13(45):11096-104. PubMed ID: 26399751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure of the human immunodeficiency virus type-1 TAR RNA reveals principles of RNA recognition by Tat protein.
    Aboul-ela F; Karn J; Varani G
    J Mol Biol; 1995 Oct; 253(2):313-32. PubMed ID: 7563092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific binding of arginine to TAR RNA.
    Tao J; Frankel AD
    Proc Natl Acad Sci U S A; 1992 Apr; 89(7):2723-6. PubMed ID: 1557378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientation and affinity of HIV-1 Tat fragments in Tat-TAR complex determined by fluorescence resonance energy transfer.
    Cao H; Tamilarasu N; Rana TM
    Bioconjug Chem; 2006; 17(2):352-8. PubMed ID: 16536465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altering the context of an RNA bulge switches the binding specificities of two viral Tat proteins.
    Smith CA; Crotty S; Harada Y; Frankel AD
    Biochemistry; 1998 Jul; 37(30):10808-14. PubMed ID: 9692971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the solution conformations of unbound and Tat peptide-bound forms of HIV-1 TAR RNA.
    Long KS; Crothers DM
    Biochemistry; 1999 Aug; 38(31):10059-69. PubMed ID: 10433713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen-bonding contacts in the major groove are required for human immunodeficiency virus type-1 tat protein recognition of TAR RNA.
    Hamy F; Asseline U; Grasby J; Iwai S; Pritchard C; Slim G; Butler PJ; Karn J; Gait MJ
    J Mol Biol; 1993 Mar; 230(1):111-23. PubMed ID: 8450529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping the interaction forces between TAR RNA and TAT peptides on GaAs surfaces using chemical force microscopy.
    Cho Y; Ivanisevic A
    Langmuir; 2006 Feb; 22(4):1768-74. PubMed ID: 16460104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of neomycin to the TAR element of HIV-1 RNA induces dissociation of Tat protein by an allosteric mechanism.
    Wang S; Huber PW; Cui M; Czarnik AW; Mei HY
    Biochemistry; 1998 Apr; 37(16):5549-57. PubMed ID: 9548939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA conformation in the Tat-TAR complex determined by site-specific photo-cross-linking.
    Wang Z; Rana TM
    Biochemistry; 1996 May; 35(20):6491-9. PubMed ID: 8639596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using capillary electrophoresis to study methylation effect on RNA-peptide interaction.
    Mucha P; Szyk A; Rekowski P; Agris PF
    Acta Biochim Pol; 2003; 50(3):857-64. PubMed ID: 14515166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HIV-1 regulatory protein tat induces RNA binding proteins in central nervous system cells that associate with the viral trans-acting-response regulatory motif.
    Kundu M; Ansari SA; Chepenik LG; Pomerantz RJ; Khalili K; Rappaport J; Amini S
    J Hum Virol; 1999; 2(2):72-80. PubMed ID: 10225209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction of HIV-1 Tat(32-72) with its target RNA: a fluorescence and nuclear magnetic resonance study.
    Metzger AU; Bayer P; Willbold D; Hoffmann S; Frank RW; Goody RS; Rösch P
    Biochem Biophys Res Commun; 1997 Dec; 241(1):31-6. PubMed ID: 9405229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based design of ligands for protein basic domains: application to the HIV-1 Tat protein.
    Filikov AV; James TL
    J Comput Aided Mol Des; 1998 May; 12(3):229-40. PubMed ID: 9749367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the proximity of the core domain of an HIV-1 Tat fragment in a Tat-TAR complex by affinity cleaving.
    Huq I; Rana TM
    Biochemistry; 1997 Oct; 36(41):12592-9. PubMed ID: 9376365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural mimicry of retroviral tat proteins by constrained beta-hairpin peptidomimetics: ligands with high affinity and selectivity for viral TAR RNA regulatory elements.
    Athanassiou Z; Dias RL; Moehle K; Dobson N; Varani G; Robinson JA
    J Am Chem Soc; 2004 Jun; 126(22):6906-13. PubMed ID: 15174860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.