These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 25800455)
21. How colloid-colloid interactions and hydrodynamic effects influence the percolation threshold: A simulation study in alumina suspensions. Laganapan AM; Mouas M; Videcoq A; Cerbelaud M; Bienia M; Bowen P; Ferrando R J Colloid Interface Sci; 2015 Nov; 458():241-6. PubMed ID: 26232284 [TBL] [Abstract][Full Text] [Related]
22. Diffusion of spherical particles in microcavities. Imperio A; Padding JT; Briels WJ J Chem Phys; 2011 Apr; 134(15):154904. PubMed ID: 21513415 [TBL] [Abstract][Full Text] [Related]
23. Role of low flow and backward flow zones on colloid transport in pore structures derived from real porous media. Li X; Li Z; Zhang D Environ Sci Technol; 2010 Jul; 44(13):4936-42. PubMed ID: 20540578 [TBL] [Abstract][Full Text] [Related]
24. Hydrodynamics-mediated trapping of micro-swimmers near drops. Desai N; Shaik VA; Ardekani AM Soft Matter; 2018 Jan; 14(2):264-278. PubMed ID: 29239442 [TBL] [Abstract][Full Text] [Related]
25. Precise multipole method for calculating many-body hydrodynamic interactions in a microchannel. Kedzierski M; Wajnryb E J Chem Phys; 2010 Oct; 133(15):154105. PubMed ID: 20969368 [TBL] [Abstract][Full Text] [Related]
26. Free volumes and the anomalous self-diffusivity of attractive colloids. Krekelberg WP; Ganesan V; Truskett TM J Phys Chem B; 2006 Mar; 110(11):5166-9. PubMed ID: 16539441 [TBL] [Abstract][Full Text] [Related]
27. Pair diffusion, hydrodynamic interactions, and available volume in dense fluids. Mittal J; Hummer G J Chem Phys; 2012 Jul; 137(3):034110. PubMed ID: 22830686 [TBL] [Abstract][Full Text] [Related]
28. Hydrodynamic attraction of immobile particles due to interfacial forces. Morthomas J; Würger A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051405. PubMed ID: 20866228 [TBL] [Abstract][Full Text] [Related]
29. Detention Times of Microswimmers Close to Surfaces: Influence of Hydrodynamic Interactions and Noise. Schaar K; Zöttl A; Stark H Phys Rev Lett; 2015 Jul; 115(3):038101. PubMed ID: 26230827 [TBL] [Abstract][Full Text] [Related]
30. Surface heterogeneity on hemispheres-in-cell model yields all experimentally-observed non-straining colloid retention mechanisms in porous media in the presence of energy barriers. Ma H; Pazmino E; Johnson WP Langmuir; 2011 Dec; 27(24):14982-94. PubMed ID: 22044388 [TBL] [Abstract][Full Text] [Related]
31. Rotational diffusion of spherical colloids close to a wall. Rogers SA; Lisicki M; Cichocki B; Dhont JK; Lang PR Phys Rev Lett; 2012 Aug; 109(9):098305. PubMed ID: 23002893 [TBL] [Abstract][Full Text] [Related]
32. Colloidal surface interactions and membrane fouling: investigations at pore scale. Bacchin P; Marty A; Duru P; Meireles M; Aimar P Adv Colloid Interface Sci; 2011 May; 164(1-2):2-11. PubMed ID: 21130419 [TBL] [Abstract][Full Text] [Related]
33. Hydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-dimensional confinement. Zöttl A; Stark H Phys Rev Lett; 2014 Mar; 112(11):118101. PubMed ID: 24702421 [TBL] [Abstract][Full Text] [Related]
34. Anomalous preasymptotic colloid transport by hydrodynamic dispersion in microfluidic capillary flow. Fridjonsson EO; Seymour JD; Codd SL Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):010301. PubMed ID: 25122236 [TBL] [Abstract][Full Text] [Related]
35. Metal speciation dynamics in dispersions of soft colloidal ligand particles under steady-state laminar flow condition. Duval JF; Qian S J Phys Chem A; 2009 Nov; 113(46):12791-804. PubMed ID: 19810749 [TBL] [Abstract][Full Text] [Related]
36. From random sphere packings to regular pillar arrays: effect of the macroscopic confinement on hydrodynamic dispersion. Daneyko A; Khirevich S; Höltzel A; Seidel-Morgenstern A; Tallarek U J Chromatogr A; 2011 Nov; 1218(45):8231-48. PubMed ID: 21982445 [TBL] [Abstract][Full Text] [Related]
37. Vesicular self-assembly of colloidal amphiphiles in microfluidics. He J; Wang L; Wei Z; Yang Y; Wang C; Han X; Nie Z ACS Appl Mater Interfaces; 2013 Oct; 5(19):9746-51. PubMed ID: 24018018 [TBL] [Abstract][Full Text] [Related]
38. Size fractionation and characterization of natural colloids by flow-field flow fractionation coupled to multi-angle laser light scattering. Baalousha M; Kammer FV; Motelica-Heino M; Hilal HS; Le Coustumer P J Chromatogr A; 2006 Feb; 1104(1-2):272-81. PubMed ID: 16360663 [TBL] [Abstract][Full Text] [Related]
39. Small-scale particle advection, manipulation and mixing: beyond the hydrodynamic scale. Straube AV J Phys Condens Matter; 2011 May; 23(18):184122. PubMed ID: 21508483 [TBL] [Abstract][Full Text] [Related]
40. Effective diffusion of confined active Brownian swimmers. Sandoval M; Dagdug L Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062711. PubMed ID: 25615133 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]