These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 25800455)
41. Hydrodynamically Controlled Self-Organization in Mixtures of Active and Passive Colloids. Madden IP; Wang L; Simmchen J; Luijten E Small; 2022 May; 18(21):e2107023. PubMed ID: 35304973 [TBL] [Abstract][Full Text] [Related]
42. Unification of dynamic density functional theory for colloidal fluids to include inertia and hydrodynamic interactions: derivation and numerical experiments. Goddard BD; Nold A; Savva N; Yatsyshin P; Kalliadasis S J Phys Condens Matter; 2013 Jan; 25(3):035101. PubMed ID: 23220969 [TBL] [Abstract][Full Text] [Related]
43. Anisotropic diffusion of concentrated hard-sphere colloids near a hard wall studied by evanescent wave dynamic light scattering. Michailidou VN; Swan JW; Brady JF; Petekidis G J Chem Phys; 2013 Oct; 139(16):164905. PubMed ID: 24182077 [TBL] [Abstract][Full Text] [Related]
44. Colloidal dynamics: influence of diffusion, inertia and colloidal forces on cluster formation. Kovalchuk N; Starov V; Langston P; Hilal N; Zhdanov V J Colloid Interface Sci; 2008 Sep; 325(2):377-85. PubMed ID: 18619605 [TBL] [Abstract][Full Text] [Related]
45. Instabilities in granular binary mixtures at moderate densities. Mitrano PP; Garzó V; Hrenya CM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):020201. PubMed ID: 25353402 [TBL] [Abstract][Full Text] [Related]
46. Size and shape effects on diffusion and absorption of colloidal particles near a partially absorbing sphere: implications for uptake of nanoparticles in animal cells. Shi W; Wang J; Fan X; Gao H Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061914. PubMed ID: 19256875 [TBL] [Abstract][Full Text] [Related]
47. Dynamics in crowded environments: is non-Gaussian Brownian diffusion normal? Kwon G; Sung BJ; Yethiraj A J Phys Chem B; 2014 Jul; 118(28):8128-34. PubMed ID: 24779432 [TBL] [Abstract][Full Text] [Related]
48. Effective interactions and dynamics of small passive particles in an active bacterial medium. Semeraro EF; Devos JM; Narayanan T J Chem Phys; 2018 May; 148(20):204905. PubMed ID: 29865804 [TBL] [Abstract][Full Text] [Related]
49. Anisotropic and hindered diffusion of colloidal particles in a closed cylinder. Eral HB; Oh JM; van den Ende D; Mugele F; Duits MH Langmuir; 2010 Nov; 26(22):16722-9. PubMed ID: 20936834 [TBL] [Abstract][Full Text] [Related]
50. Tracking colloid transport in porous media using discrete flow fields and sensitivity of simulated colloid deposition to space discretization. Li Z; Zhang D; Li X Environ Sci Technol; 2010 Feb; 44(4):1274-80. PubMed ID: 20088544 [TBL] [Abstract][Full Text] [Related]
52. Effect of angular momentum conservation on hydrodynamic simulations of colloids. Yang M; Theers M; Hu J; Gompper G; Winkler RG; Ripoll M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013301. PubMed ID: 26274301 [TBL] [Abstract][Full Text] [Related]
53. A Smoluchowski model of crystallization dynamics of small colloidal clusters. Beltran-Villegas DJ; Sehgal RM; Maroudas D; Ford DM; Bevan MA J Chem Phys; 2011 Oct; 135(15):154506. PubMed ID: 22029323 [TBL] [Abstract][Full Text] [Related]
54. A hydrodynamic mechanism for attraction of undulatory microswimmers to surfaces (bordertaxis). Yuan J; Raizen DM; Bau HH J R Soc Interface; 2015 Aug; 12(109):20150227. PubMed ID: 26156298 [TBL] [Abstract][Full Text] [Related]
55. Microstructure of sheared monosized colloidal suspensions resulting from hydrodynamic and electrostatic interactions. Xu B; Gilchrist JF J Chem Phys; 2014 May; 140(20):204903. PubMed ID: 24880321 [TBL] [Abstract][Full Text] [Related]
56. Trapping of swimmers in a vortex lattice. Berman SA; Mitchell KA Chaos; 2020 Jun; 30(6):063121. PubMed ID: 32611071 [TBL] [Abstract][Full Text] [Related]
57. Size- and concentration-dependent deposition of fluorescent silica colloids in saturated sand columns: transport experiments and modeling. Vitorge E; Szenknect S; Martins JM; Gaudet JP Environ Sci Process Impacts; 2013 Aug; 15(8):1590-600. PubMed ID: 23812006 [TBL] [Abstract][Full Text] [Related]
58. Development of a trajectory model for predicting attachment of submicrometer particles in porous media: stabilized NZVI as a case study. Wei YT; Wu SC Environ Sci Technol; 2010 Dec; 44(23):8996-9002. PubMed ID: 21067208 [TBL] [Abstract][Full Text] [Related]
59. Numerical simulation and measurement of liquid hold-up in biporous media containing discrete stagnant zones. Kandhai D; Tallarek U; Hlushkou D; Hoekstra A; Sloot PM; Van As H Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):521-34. PubMed ID: 16214692 [TBL] [Abstract][Full Text] [Related]
60. Applicability of colloid filtration theory in size-distributed, reduced porosity, granular media in the absence of energy barriers. Pazmino EF; Ma H; Johnson WP Environ Sci Technol; 2011 Dec; 45(24):10401-7. PubMed ID: 22029252 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]