These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 25800552)

  • 61. Identification of the cyclic-nucleotide-binding domain as a conserved determinant of ion-channel cell-surface localization.
    Akhavan A; Atanasiu R; Noguchi T; Han W; Holder N; Shrier A
    J Cell Sci; 2005 Jul; 118(Pt 13):2803-12. PubMed ID: 15961404
    [TBL] [Abstract][Full Text] [Related]  

  • 62. High-Resolution Cryoelectron Microscopy Structure of the Cyclic Nucleotide-Modulated Potassium Channel MloK1 in a Lipid Bilayer.
    Kowal J; Biyani N; Chami M; Scherer S; Rzepiela AJ; Baumgartner P; Upadhyay V; Nimigean CM; Stahlberg H
    Structure; 2018 Jan; 26(1):20-27.e3. PubMed ID: 29249605
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Short- and long-term plasticity in CA1 neurons from mice lacking h-channel auxiliary subunit TRIP8b.
    Brager DH; Lewis AS; Chetkovich DM; Johnston D
    J Neurophysiol; 2013 Nov; 110(10):2350-7. PubMed ID: 23966674
    [TBL] [Abstract][Full Text] [Related]  

  • 64. HCN ion channels and accessory proteins in epilepsy: genetic analysis of a large cohort of patients and review of the literature.
    DiFrancesco JC; Castellotti B; Milanesi R; Ragona F; Freri E; Canafoglia L; Franceschetti S; Ferrarese C; Magri S; Taroni F; Costa C; Labate A; Gambardella A; Solazzi R; Binda A; Rivolta I; Di Gennaro G; Casciato S; D'Incerti L; Barbuti A; DiFrancesco D; Granata T; Gellera C
    Epilepsy Res; 2019 Jul; 153():49-58. PubMed ID: 30986657
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Structure and rearrangements in the carboxy-terminal region of SpIH channels.
    Flynn GE; Black KD; Islas LD; Sankaran B; Zagotta WN
    Structure; 2007 Jun; 15(6):671-82. PubMed ID: 17562314
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Structural basis for hyperpolarization-dependent opening of human HCN1 channel.
    Burtscher V; Mount J; Huang J; Cowgill J; Chang Y; Bickel K; Chen J; Yuan P; Chanda B
    Nat Commun; 2024 Jun; 15(1):5216. PubMed ID: 38890331
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cyclic Purine and Pyrimidine Nucleotides Bind to the HCN2 Ion Channel and Variably Promote C-Terminal Domain Interactions and Opening.
    Ng LCT; Putrenko I; Baronas V; Van Petegem F; Accili EA
    Structure; 2016 Oct; 24(10):1629-1642. PubMed ID: 27568927
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels as Drug Targets for Neurological Disorders.
    Santoro B; Shah MM
    Annu Rev Pharmacol Toxicol; 2020 Jan; 60():109-131. PubMed ID: 31914897
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Bipolar switching by HCN voltage sensor underlies hyperpolarization activation.
    Cowgill J; Klenchin VA; Alvarez-Baron C; Tewari D; Blair A; Chanda B
    Proc Natl Acad Sci U S A; 2019 Jan; 116(2):670-678. PubMed ID: 30587580
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Minimal molecular determinants of isoform-specific differences in efficacy in the HCN channel family.
    Alvarez-Baron CP; Klenchin VA; Chanda B
    J Gen Physiol; 2018 Aug; 150(8):1203-1213. PubMed ID: 29980633
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Molecular mechanism of cAMP modulation of HCN pacemaker channels.
    Wainger BJ; DeGennaro M; Santoro B; Siegelbaum SA; Tibbs GR
    Nature; 2001 Jun; 411(6839):805-10. PubMed ID: 11459060
    [TBL] [Abstract][Full Text] [Related]  

  • 72. HCN2 activation modulation: An electrophysiological and molecular study of the well-preserved LCI sequence in the pore channel.
    Hernandez A; Hernández-Centeno R; Espino-Saldaña ÁE; Martínez-Torres A
    Arch Biochem Biophys; 2020 Aug; 689():108436. PubMed ID: 32492375
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Regulation of gating and rundown of HCN hyperpolarization-activated channels by exogenous and endogenous PIP2.
    Pian P; Bucchi A; Robinson RB; Siegelbaum SA
    J Gen Physiol; 2006 Nov; 128(5):593-604. PubMed ID: 17074978
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Identification of Small-Molecule Inhibitors of Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels.
    Han Y; Lyman K; Clutter M; Schiltz GE; Ismail QA; Prados DB; Luan CH; Chetkovich DM
    J Biomol Screen; 2015 Oct; 20(9):1124-31. PubMed ID: 26045196
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels contain multiple S-palmitoylation sites.
    Itoh M; Ishihara K; Nakashima N; Takano M
    J Physiol Sci; 2016 May; 66(3):241-8. PubMed ID: 26546007
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Hyperpolarization-activated cyclic-nucleotide-gated channels potentially modulate axonal excitability at different thresholds.
    Weerasinghe D; Menon P; Vucic S
    J Neurophysiol; 2017 Dec; 118(6):3044-3050. PubMed ID: 28904107
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Electromechanical coupling mechanism for activation and inactivation of an HCN channel.
    Dai G; Aman TK; DiMaio F; Zagotta WN
    Nat Commun; 2021 May; 12(1):2802. PubMed ID: 33990563
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Direct evidence for calcium conductance of hyperpolarization-activated cyclic nucleotide-gated channels and human native If at physiological calcium concentrations.
    Michels G; Brandt MC; Zagidullin N; Khan IF; Larbig R; van Aaken S; Wippermann J; Hoppe UC
    Cardiovasc Res; 2008 Jun; 78(3):466-75. PubMed ID: 18252758
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Discovery of a small-molecule inhibitor of the TRIP8b-HCN interaction with efficacy in neurons.
    Han Y; Iyamu ID; Clutter MR; Mishra RK; Lyman KA; Zhou C; Michailidis I; Xia MY; Sharma H; Luan CH; Schiltz GE; Chetkovich DM
    J Biol Chem; 2022 Jul; 298(7):102069. PubMed ID: 35623388
    [TBL] [Abstract][Full Text] [Related]  

  • 80. HCN Channel C-Terminal Region Speeds Activation Rates Independently of Autoinhibition.
    Magee KE; Madden Z; Young EC
    J Membr Biol; 2015 Dec; 248(6):1043-60. PubMed ID: 26123597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.