These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 25800674)
1. Sumoylation of Rap1 mediates the recruitment of TFIID to promote transcription of ribosomal protein genes. Chymkowitch P; Nguéa AP; Aanes H; Koehler CJ; Thiede B; Lorenz S; Meza-Zepeda LA; Klungland A; Enserink JM Genome Res; 2015 Jun; 25(6):897-906. PubMed ID: 25800674 [TBL] [Abstract][Full Text] [Related]
2. Direct TFIIA-TFIID protein contacts drive budding yeast ribosomal protein gene transcription. Layer JH; Weil PA J Biol Chem; 2013 Aug; 288(32):23273-94. PubMed ID: 23814059 [TBL] [Abstract][Full Text] [Related]
3. Promoter architecture and transcriptional regulation of Abf1-dependent ribosomal protein genes in Saccharomyces cerevisiae. Fermi B; Bosio MC; Dieci G Nucleic Acids Res; 2016 Jul; 44(13):6113-26. PubMed ID: 27016735 [TBL] [Abstract][Full Text] [Related]
4. TORC1-dependent sumoylation of Rpc82 promotes RNA polymerase III assembly and activity. Chymkowitch P; Nguéa P A; Aanes H; Robertson J; Klungland A; Enserink JM Proc Natl Acad Sci U S A; 2017 Jan; 114(5):1039-1044. PubMed ID: 28096404 [TBL] [Abstract][Full Text] [Related]
5. Dynamic sumoylation of promoter-bound general transcription factors facilitates transcription by RNA polymerase II. Baig MS; Dou Y; Bergey BG; Bahar R; Burgener JM; Moallem M; McNeil JB; Akhter A; Burke GL; Sri Theivakadadcham VS; Richard P; D'Amours D; Rosonina E PLoS Genet; 2021 Sep; 17(9):e1009828. PubMed ID: 34587155 [TBL] [Abstract][Full Text] [Related]
6. The S. cerevisiae SUMO stress response is a conjugation-deconjugation cycle that targets the transcription machinery. Lewicki MC; Srikumar T; Johnson E; Raught B J Proteomics; 2015 Apr; 118():39-48. PubMed ID: 25434491 [TBL] [Abstract][Full Text] [Related]
7. Assembly of regulatory factors on rRNA and ribosomal protein genes in Saccharomyces cerevisiae. Kasahara K; Ohtsuki K; Ki S; Aoyama K; Takahashi H; Kobayashi T; Shirahige K; Kokubo T Mol Cell Biol; 2007 Oct; 27(19):6686-705. PubMed ID: 17646381 [TBL] [Abstract][Full Text] [Related]
8. Sumoylation of DNA-bound transcription factor Sko1 prevents its association with nontarget promoters. Sri Theivakadadcham VS; Bergey BG; Rosonina E PLoS Genet; 2019 Feb; 15(2):e1007991. PubMed ID: 30763307 [TBL] [Abstract][Full Text] [Related]
9. Global analysis of SUMO chain function reveals multiple roles in chromatin regulation. Srikumar T; Lewicki MC; Costanzo M; Tkach JM; van Bakel H; Tsui K; Johnson ES; Brown GW; Andrews BJ; Boone C; Giaever G; Nislow C; Raught B J Cell Biol; 2013 Apr; 201(1):145-63. PubMed ID: 23547032 [TBL] [Abstract][Full Text] [Related]
10. Activator-specific recruitment of TFIID and regulation of ribosomal protein genes in yeast. Mencía M; Moqtaderi Z; Geisberg JV; Kuras L; Struhl K Mol Cell; 2002 Apr; 9(4):823-33. PubMed ID: 11983173 [TBL] [Abstract][Full Text] [Related]
11. SUMO functions in constitutive transcription and during activation of inducible genes in yeast. Rosonina E; Duncan SM; Manley JL Genes Dev; 2010 Jun; 24(12):1242-52. PubMed ID: 20504900 [TBL] [Abstract][Full Text] [Related]
12. Fine-structure analysis of ribosomal protein gene transcription. Zhao Y; McIntosh KB; Rudra D; Schawalder S; Shore D; Warner JR Mol Cell Biol; 2006 Jul; 26(13):4853-62. PubMed ID: 16782874 [TBL] [Abstract][Full Text] [Related]
13. Identification of a transcriptional activation domain in yeast repressor activator protein 1 (Rap1) using an altered DNA-binding specificity variant. Johnson AN; Weil PA J Biol Chem; 2017 Apr; 292(14):5705-5723. PubMed ID: 28196871 [TBL] [Abstract][Full Text] [Related]
14. Saccharomyces cerevisiae HMO1 interacts with TFIID and participates in start site selection by RNA polymerase II. Kasahara K; Ki S; Aoyama K; Takahashi H; Kokubo T Nucleic Acids Res; 2008 Mar; 36(4):1343-57. PubMed ID: 18187511 [TBL] [Abstract][Full Text] [Related]
15. Fpr1, a primary target of rapamycin, functions as a transcription factor for ribosomal protein genes cooperatively with Hmo1 in Saccharomyces cerevisiae. Kasahara K; Nakayama R; Shiwa Y; Kanesaki Y; Ishige T; Yoshikawa H; Kokubo T PLoS Genet; 2020 Jun; 16(6):e1008865. PubMed ID: 32603360 [TBL] [Abstract][Full Text] [Related]
16. SUMO Pathway Modulation of Regulatory Protein Binding at the Ribosomal DNA Locus in Saccharomyces cerevisiae. Gillies J; Hickey CM; Su D; Wu Z; Peng J; Hochstrasser M Genetics; 2016 Apr; 202(4):1377-94. PubMed ID: 26837752 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide localization analysis of a complete set of Tafs reveals a specific effect of the taf1 mutation on Taf2 occupancy and provides indirect evidence for different TFIID conformations at different promoters. Ohtsuki K; Kasahara K; Shirahige K; Kokubo T Nucleic Acids Res; 2010 Apr; 38(6):1805-20. PubMed ID: 20026583 [TBL] [Abstract][Full Text] [Related]
18. The Regulation of Chromatin by Dynamic SUMO Modifications. Wilson NR; Hochstrasser M Methods Mol Biol; 2016; 1475():23-38. PubMed ID: 27631795 [TBL] [Abstract][Full Text] [Related]
19. Chromatin Association of Gcn4 Is Limited by Post-translational Modifications Triggered by its DNA-Binding in Saccharomyces cerevisiae. Akhter A; Rosonina E Genetics; 2016 Dec; 204(4):1433-1445. PubMed ID: 27770033 [TBL] [Abstract][Full Text] [Related]
20. SWI/SNF-dependent chromatin remodeling of RNR3 requires TAF(II)s and the general transcription machinery. Sharma VM; Li B; Reese JC Genes Dev; 2003 Feb; 17(4):502-15. PubMed ID: 12600943 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]