BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 25800697)

  • 1. Rational design of a chalcogenopyrylium-based surface-enhanced resonance Raman scattering nanoprobe with attomolar sensitivity.
    Harmsen S; Bedics MA; Wall MA; Huang R; Detty MR; Kircher MF
    Nat Commun; 2015 Mar; 6():6570. PubMed ID: 25800697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unveiling NIR Aza-Boron-Dipyrromethene (BODIPY) Dyes as Raman Probes: Surface-Enhanced Raman Scattering (SERS)-Guided Selective Detection and Imaging of Human Cancer Cells.
    Adarsh N; Ramya AN; Maiti KK; Ramaiah D
    Chemistry; 2017 Oct; 23(57):14286-14291. PubMed ID: 28796314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal surface-enhanced Raman tags: individual nanorods for measurements from the visible to the infrared (514-1064 nm).
    McLintock A; Cunha-Matos CA; Zagnoni M; Millington OR; Wark AW
    ACS Nano; 2014 Aug; 8(8):8600-9. PubMed ID: 25106075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on adsorption of mono- and multi-chromophoric hemicyanine dyes on silver nanoparticles by surface-enhanced resonance Raman and theoretical calculations.
    Biswas N; Thomas S; Kapoor S; Mishra A; Wategaonkar S; Mukherjee T
    J Chem Phys; 2008 Nov; 129(18):184702. PubMed ID: 19045418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced resonance Raman scattering of black inkjet dyes in solution and in situ printed onto paper.
    Littleford RE; Hughes MP; Dent G; Tackley D; Smith WE
    Appl Spectrosc; 2003 Aug; 57(8):977-83. PubMed ID: 14661841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silica-Coated, Waxberry-like Surface-Enhanced Raman Resonant Scattering Tag-Pair with Near-Infrared Raman Dye Encoding: Toward
    Yin Y; Mei R; Wang Y; Zhao X; Yu Q; Liu W; Chen L
    Anal Chem; 2020 Nov; 92(21):14814-14821. PubMed ID: 33045167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles.
    Kneipp J; Kneipp H; Rice WL; Kneipp K
    Anal Chem; 2005 Apr; 77(8):2381-5. PubMed ID: 15828770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells.
    Kneipp K; Kneipp H; Kneipp J
    Acc Chem Res; 2006 Jul; 39(7):443-50. PubMed ID: 16846208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generating monomeric 5-coordinated microperoxidase-11 using carboxylic acid functionalized silver nanoparticles: A surface-enhanced resonance Raman scattering analysis.
    Kalaivani G; Sivanesan A; Kannan A; Sevvel R
    Colloids Surf B Biointerfaces; 2016 Oct; 146():722-30. PubMed ID: 27434160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface enhanced resonance Raman spectroscopy (SERRS) for probing through plastic and tissue barriers using a handheld spectrometer.
    Nicolson F; Jamieson LE; Mabbott S; Plakas K; Shand NC; Detty MR; Graham D; Faulds K
    Analyst; 2018 Dec; 143(24):5965-5973. PubMed ID: 30225477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cancer imaging using surface-enhanced resonance Raman scattering nanoparticles.
    Harmsen S; Wall MA; Huang R; Kircher MF
    Nat Protoc; 2017 Jul; 12(7):1400-1414. PubMed ID: 28686581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A controlled and reproducible pathway to dye-tagged, encapsulated silver nanoparticles as substrates for SERS multiplexing.
    Brown LO; Doorn SK
    Langmuir; 2008 Mar; 24(6):2277-80. PubMed ID: 18278969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced Raman spectroscopy combined with atomic force microscopy for ultrasensitive detection of thrombin.
    Bizzarri AR; Cannistraro S
    Anal Biochem; 2009 Oct; 393(2):149-54. PubMed ID: 19563767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and photoelectrochemical performance of chalcogenopyrylium monomethine dyes bearing phosphonate/phosphonic acid substituents.
    Bedics MA; Mulhern KR; Watson DF; Detty MR
    J Org Chem; 2013 Sep; 78(17):8885-91. PubMed ID: 23899118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of polycyclic aromatic hydrocarbon (PAH) compounds in artificial sea-water using surface-enhanced Raman scattering (SERS).
    Péron O; Rinnert E; Lehaitre M; Crassous P; Compère C
    Talanta; 2009 Jul; 79(2):199-204. PubMed ID: 19559865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative enhanced Raman scattering of labeled DNA from gold and silver nanoparticles.
    Stokes RJ; Macaskill A; Lundahl PJ; Smith WE; Faulds K; Graham D
    Small; 2007 Sep; 3(9):1593-601. PubMed ID: 17647254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplexing potential of NIR resonant and non-resonant Raman reporters for bio-imaging applications.
    Eremina OE; Schaefer S; Czaja AT; Awad S; Lim MA; Zavaleta C
    Analyst; 2023 Nov; 148(23):5915-5925. PubMed ID: 37850265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates.
    Zhong LB; Yin J; Zheng YM; Liu Q; Cheng XX; Luo FH
    Anal Chem; 2014 Jul; 86(13):6262-7. PubMed ID: 24873535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles.
    Schwartzberg AM; Oshiro TY; Zhang JZ; Huser T; Talley CE
    Anal Chem; 2006 Jul; 78(13):4732-6. PubMed ID: 16808490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of chronic lymphocytic leukemia cell surface markers using surface enhanced Raman scattering gold nanoparticles.
    Nguyen CT; Nguyen JT; Rutledge S; Zhang J; Wang C; Walker GC
    Cancer Lett; 2010 Jun; 292(1):91-7. PubMed ID: 20042272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.