BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25800734)

  • 1. The chromatin scaffold protein SAFB1 localizes SUMO-1 to the promoters of ribosomal protein genes to facilitate transcription initiation and splicing.
    Liu HW; Banerjee T; Guan X; Freitas MA; Parvin JD
    Nucleic Acids Res; 2015 Apr; 43(7):3605-13. PubMed ID: 25800734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAFB1 mediates repression of immune regulators and apoptotic genes in breast cancer cells.
    Hammerich-Hille S; Kaipparettu BA; Tsimelzon A; Creighton CJ; Jiang S; Polo JM; Melnick A; Meyer R; Oesterreich S
    J Biol Chem; 2010 Feb; 285(6):3608-3616. PubMed ID: 19901029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SAFB restricts contact domain boundaries associated with L1 chimeric transcription.
    Hong Y; Bie L; Zhang T; Yan X; Jin G; Chen Z; Wang Y; Li X; Pei G; Zhang Y; Hong Y; Gong L; Li P; Xie W; Zhu Y; Shen X; Liu N
    Mol Cell; 2024 May; 84(9):1637-1650.e10. PubMed ID: 38604171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of proteins binding to E-Box/Ku86 sites and function of the tumor suppressor SAFB1 in transcriptional regulation of the human xanthine oxidoreductase gene.
    Lin J; Xu P; LaVallee P; Hoidal JR
    J Biol Chem; 2008 Oct; 283(44):29681-9. PubMed ID: 18772145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SAFB associates with nascent RNAs and can promote gene expression in mouse embryonic stem cells.
    Cherney RE; Eberhard QE; Giri G; Mills CA; Porrello A; Zhang Z; White D; Trotman JB; Herring LE; Dominguez D; Calabrese JM
    RNA; 2023 Oct; 29(10):1535-1556. PubMed ID: 37468167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oncogenesis driven by the Ras/Raf pathway requires the SUMO E2 ligase Ubc9.
    Yu B; Swatkoski S; Holly A; Lee LC; Giroux V; Lee CS; Hsu D; Smith JL; Yuen G; Yue J; Ann DK; Simpson RM; Creighton CJ; Figg WD; Gucek M; Luo J
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):E1724-33. PubMed ID: 25805818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of SUMO E3 ligase-specific substrates using the HuProt human proteome microarray.
    Cox E; Uzoma I; Guzzo C; Jeong JS; Matunis M; Blackshaw S; Zhu H
    Methods Mol Biol; 2015; 1295():455-63. PubMed ID: 25820740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the loss of SUMO pathway function on cancer cells and tumor proliferation.
    He X; Riceberg J; Pulukuri SM; Grossman S; Shinde V; Shah P; Brownell JE; Dick L; Newcomb J; Bence N
    PLoS One; 2015; 10(4):e0123882. PubMed ID: 25860128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RECQ5-dependent SUMOylation of DNA topoisomerase I prevents transcription-associated genome instability.
    Li M; Pokharel S; Wang JT; Xu X; Liu Y
    Nat Commun; 2015 Apr; 6():6720. PubMed ID: 25851487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4.
    González-Prieto R; Cuijpers SA; Kumar R; Hendriks IA; Vertegaal AC
    Cell Cycle; 2015; 14(12):1859-72. PubMed ID: 25895136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic interaction mapping reveals a role for the SWI/SNF nucleosome remodeler in spliceosome activation in fission yeast.
    Patrick KL; Ryan CJ; Xu J; Lipp JJ; Nissen KE; Roguev A; Shales M; Krogan NJ; Guthrie C
    PLoS Genet; 2015 Mar; 11(3):e1005074. PubMed ID: 25825871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A lncRNA regulates alternative splicing via establishment of a splicing-specific chromatin signature.
    Gonzalez I; Munita R; Agirre E; Dittmer TA; Gysling K; Misteli T; Luco RF
    Nat Struct Mol Biol; 2015 May; 22(5):370-6. PubMed ID: 25849144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The alternative role of DNA methylation in splicing regulation.
    Lev Maor G; Yearim A; Ast G
    Trends Genet; 2015 May; 31(5):274-80. PubMed ID: 25837375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vitro Studies Reveal a Sequential Mode of Chain Processing by the Yeast SUMO (Small Ubiquitin-related Modifier)-specific Protease Ulp2.
    Eckhoff J; Dohmen RJ
    J Biol Chem; 2015 May; 290(19):12268-81. PubMed ID: 25833950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unravelling the RNA-Binding Properties of SAFB Proteins in Breast Cancer Cells.
    Hong E; Best A; Gautrey H; Chin J; Razdan A; Curk T; Elliott DJ; Tyson-Capper AJ
    Biomed Res Int; 2015; 2015():395816. PubMed ID: 26273616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Widespread exon skipping triggers degradation by nuclear RNA surveillance in fission yeast.
    Bitton DA; Atkinson SR; Rallis C; Smith GC; Ellis DA; Chen YY; Malecki M; Codlin S; Lemay JF; Cotobal C; Bachand F; Marguerat S; Mata J; Bähler J
    Genome Res; 2015 Jun; 25(6):884-96. PubMed ID: 25883323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TRIM5α is a SUMO substrate.
    Dutrieux J; Portilho DM; Arhel NJ; Hazan U; Nisole S
    Retrovirology; 2015 Mar; 12():28. PubMed ID: 25880753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SUMO modification of Akt regulates global SUMOylation and substrate SUMOylation specificity through Akt phosphorylation of Ubc9 and SUMO1.
    Lin CH; Liu SY; Lee EH
    Oncogene; 2016 Feb; 35(5):595-607. PubMed ID: 25867063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ubiquitylation, neddylation and the DNA damage response.
    Brown JS; Jackson SP
    Open Biol; 2015 Apr; 5(4):150018. PubMed ID: 25833379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MEL-18 loss mediates estrogen receptor-α downregulation and hormone independence.
    Lee JY; Won HY; Park JH; Kim HY; Choi HJ; Shin DH; Kang JH; Woo JK; Oh SH; Son T; Choi JW; Kim S; Kim HY; Yi K; Jang KS; Oh YH; Kong G
    J Clin Invest; 2015 May; 125(5):1801-14. PubMed ID: 25822021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.