These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25800981)

  • 1. Comparison of hierarchical and six degrees-of-freedom marker sets in analyzing gait kinematics.
    Schmitz A; Buczek FL; Bruening D; Rainbow MJ; Cooney K; Thelen D
    Comput Methods Biomech Biomed Engin; 2016; 19(2):199-207. PubMed ID: 25800981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A six degrees-of-freedom marker set for gait analysis: repeatability and comparison with a modified Helen Hayes set.
    Collins TD; Ghoussayni SN; Ewins DJ; Kent JA
    Gait Posture; 2009 Aug; 30(2):173-80. PubMed ID: 19473844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified conventional gait model versus cluster tracking: Test-retest reliability, agreement and impact of inverse kinematics with joint constraints on kinematic and kinetic data.
    Mentiplay BF; Clark RA
    Gait Posture; 2018 Jul; 64():75-83. PubMed ID: 29879631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis.
    De Groote F; De Laet T; Jonkers I; De Schutter J
    J Biomech; 2008 Dec; 41(16):3390-8. PubMed ID: 19026414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of toe marker placement error on joint kinematics and muscle forces using OpenSim gait simulation.
    Xu H; Merryweather A; Bloswick D; Mao Q; Wang T
    Biomed Mater Eng; 2015; 26 Suppl 1():S685-91. PubMed ID: 26406064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications of using hierarchical and six degree-of-freedom models for normal gait analyses.
    Buczek FL; Rainbow MJ; Cooney KM; Walker MR; Sanders JO
    Gait Posture; 2010 Jan; 31(1):57-63. PubMed ID: 19796947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are patient-specific joint and inertial parameters necessary for accurate inverse dynamics analyses of gait?
    Reinbolt JA; Haftka RT; Chmielewski TL; Fregly BJ
    IEEE Trans Biomed Eng; 2007 May; 54(5):782-93. PubMed ID: 17518274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proximal placement of lateral thigh skin markers reduces soft tissue artefact during normal gait using the Conventional Gait Model.
    Cockcroft J; Louw Q; Baker R
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(14):1497-504. PubMed ID: 26929983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Different Marker Sets Affect Joint Angles in Inverse Kinematics Framework.
    Mantovani G; Lamontagne M
    J Biomech Eng; 2017 Apr; 139(4):. PubMed ID: 27636354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of kinematic and kinetic parameters calculated using a cluster-based model and Vicon's plug-in gait.
    Duffell LD; Hope N; McGregor AH
    Proc Inst Mech Eng H; 2014 Feb; 228(2):206-10. PubMed ID: 24449800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization.
    Duprey S; Cheze L; Dumas R
    J Biomech; 2010 Oct; 43(14):2858-62. PubMed ID: 20701914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling initial contact dynamics during ambulation with dynamic simulation.
    Meyer AR; Wang M; Smith PA; Harris GF
    Med Biol Eng Comput; 2007 Apr; 45(4):387-94. PubMed ID: 17268804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computation of hip rotation kinematics retrospectively using functional knee calibration during gait.
    Sangeux M
    Gait Posture; 2018 Jun; 63():171-176. PubMed ID: 29763812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal estimation of dynamically consistent kinematics and kinetics for forward dynamic simulation of gait.
    Remy CD; Thelen DG
    J Biomech Eng; 2009 Mar; 131(3):031005. PubMed ID: 19154064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A practical solution to reduce soft tissue artifact error at the knee using adaptive kinematic constraints.
    Potvin BM; Shourijeh MS; Smale KB; Benoit DL
    J Biomech; 2017 Sep; 62():124-131. PubMed ID: 28291516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of passive elastic joint moment-angle relationships in the lower extremity.
    Silder A; Whittington B; Heiderscheit B; Thelen DG
    J Biomech; 2007; 40(12):2628-35. PubMed ID: 17359981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of knee marker placement error on evaluation of gait kinematic parameters.
    Szczerbik E; Kalinowska M
    Acta Bioeng Biomech; 2011; 13(3):43-6. PubMed ID: 22098124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape-model scaled gait models can neglect segment markers without consequential change to inverse kinematics results.
    Bakke D; Besier T
    J Biomech; 2022 May; 137():111086. PubMed ID: 35436755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models.
    Kainz H; Modenese L; Lloyd DG; Maine S; Walsh HPJ; Carty CP
    J Biomech; 2016 Jun; 49(9):1658-1669. PubMed ID: 27139005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane.
    Sandau M; Koblauch H; Moeslund TB; Aanæs H; Alkjær T; Simonsen EB
    Med Eng Phys; 2014 Sep; 36(9):1168-75. PubMed ID: 25085672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.