BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25801028)

  • 1. The 3D organization of chromatin explains evolutionary fragile genomic regions.
    Berthelot C; Muffato M; Abecassis J; Roest Crollius H
    Cell Rep; 2015 Mar; 10(11):1913-24. PubMed ID: 25801028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of fine-scale mammalian evolutionary breakpoints provides new insight into their relation to genome organisation.
    Lemaitre C; Zaghloul L; Sagot MF; Gautier C; Arneodo A; Tannier E; Audit B
    BMC Genomics; 2009 Jul; 10():335. PubMed ID: 19630943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative genomics reveals birth and death of fragile regions in mammalian evolution.
    Alekseyev MA; Pevzner PA
    Genome Biol; 2010; 11(11):R117. PubMed ID: 21118492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enrichment of segmental duplications in regions of breaks of synteny between the human and mouse genomes suggest their involvement in evolutionary rearrangements.
    Armengol L; Pujana MA; Cheung J; Scherer SW; Estivill X
    Hum Mol Genet; 2003 Sep; 12(17):2201-8. PubMed ID: 12915466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Close 3D proximity of evolutionary breakpoints argues for the notion of spatial synteny.
    Véron AS; Lemaitre C; Gautier C; Lacroix V; Sagot MF
    BMC Genomics; 2011 Jun; 12():303. PubMed ID: 21663614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breaking Good: Accounting for Fragility of Genomic Regions in Rearrangement Distance Estimation.
    Biller P; Guéguen L; Knibbe C; Tannier E
    Genome Biol Evol; 2016 May; 8(5):1427-39. PubMed ID: 27190002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the true evolutionary distance under the fragile breakage model.
    Alexeev N; Alekseyev MA
    BMC Genomics; 2017 May; 18(Suppl 4):356. PubMed ID: 28589865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin organization, epigenetics and differentiation: an evolutionary perspective.
    Kumari S; Swaminathan A; Chatterjee S; Senapati P; Boopathi R; Kundu TK
    Subcell Biochem; 2013; 61():3-35. PubMed ID: 23150244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new genomic evolutionary model for rearrangements, duplications, and losses that applies across eukaryotes and prokaryotes.
    Lin Y; Moret BM
    J Comput Biol; 2011 Sep; 18(9):1055-64. PubMed ID: 21899415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of chicken chromosome 28 provides new clues to the evolutionary fragility of gene-rich vertebrate regions.
    Gordon L; Yang S; Tran-Gyamfi M; Baggott D; Christensen M; Hamilton A; Crooijmans R; Groenen M; Lucas S; Ovcharenko I; Stubbs L
    Genome Res; 2007 Nov; 17(11):1603-13. PubMed ID: 17921355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Principles of 3D chromosome folding and evolutionary genome reshuffling in mammals.
    Álvarez-González L; Arias-Sardá C; Montes-Espuña L; Marín-Gual L; Vara C; Lister NC; Cuartero Y; Garcia F; Deakin J; Renfree MB; Robinson TJ; Martí-Renom MA; Waters PD; Farré M; Ruiz-Herrera A
    Cell Rep; 2022 Dec; 41(12):111839. PubMed ID: 36543130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionarily plastic regions at human 3p21.3 coincide with tumor breakpoints identified by the "elimination test".
    Darai E; Kost-Alimova M; Kiss H; Kansoul H; Klein G; Imreh S
    Genomics; 2005 Jul; 86(1):1-12. PubMed ID: 15913951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mammalian Comparative Genomics Reveals Genetic and Epigenetic Features Associated with Genome Reshuffling in Rodentia.
    Capilla L; Sánchez-Guillén RA; Farré M; Paytuví-Gallart A; Malinverni R; Ventura J; Larkin DM; Ruiz-Herrera A
    Genome Biol Evol; 2016 Dec; 8(12):3703-3717. PubMed ID: 28175287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution.
    Pevzner P; Tesler G
    Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7672-7. PubMed ID: 12810957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fragile regions and not functional constraints predominate in shaping gene organization in the genus Drosophila.
    von Grotthuss M; Ashburner M; Ranz JM
    Genome Res; 2010 Aug; 20(8):1084-96. PubMed ID: 20601587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative cytogenetics of human chromosome 3q21.3 reveals a hot spot for ectopic recombination in hominoid evolution.
    Yue Y; Grossmann B; Ferguson-Smith M; Yang F; Haaf T
    Genomics; 2005 Jan; 85(1):36-47. PubMed ID: 15607420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 7E olfactory receptor gene clusters and evolutionary chromosome rearrangements.
    Yue Y; Haaf T
    Cytogenet Genome Res; 2006; 112(1-2):6-10. PubMed ID: 16276084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin structural elements and chromosomal translocations in leukemia.
    Zhang Y; Rowley JD
    DNA Repair (Amst); 2006 Sep; 5(9-10):1282-97. PubMed ID: 16893685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three Dimensional Organization of Genome Might Have Guided the Dynamics of Gene Order Evolution in Eukaryotes.
    Bagadia M; Singh A; Singh Sandhu K
    Genome Biol Evol; 2016 Apr; 8(3):946-54. PubMed ID: 26957031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin loops, illegitimate recombination, and genome evolution.
    Kantidze OL; Razin SV
    Bioessays; 2009 Mar; 31(3):278-86. PubMed ID: 19260023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.