These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

519 related articles for article (PubMed ID: 25801276)

  • 41. Focused Ion Beam-Induced Displacive Phase Transformation From Austenite to Martensite during Fabrication of Quenched and Partitioned Steel Micro-Pillar.
    Seo EJ; Cho L; Kim JK; Mola J; Zhao L; Lee S; De Cooman BC
    J Alloys Compd; 2020; 812():. PubMed ID: 32116412
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Detection, distribution, and quantification of carbon in steel microstructures by PEELS.
    Menon ES; Fox AG
    Microsc Microanal; 2002 Oct; 8(5):392-402. PubMed ID: 12533215
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Three-dimensional observations of morphology of low-angle boundaries in ultra-low carbon lath martensite.
    Morito S; Hoang Pham A; Ohba T; Hayashi T; Furuhara T; Miyamoto G
    Microscopy (Oxf); 2017 Dec; 66(6):380-387. PubMed ID: 28992228
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of Austenitization Temperature and Pre-Deformation on CCT Diagrams of 23MnNiCrMo5-3 Steel.
    Schindler I; Kawulok R; Opěla P; Kawulok P; Rusz S; Sojka J; Sauer M; Navrátil H; Pindor L
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33202789
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Shear Strain Route Dependency of Martensite Formation in 316L Stainless Steel.
    Kang SH; Kim TK; Jang J; Oh KH
    Microsc Microanal; 2015 Jun; 21(3):582-7. PubMed ID: 26149344
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Overview of HSS Steel Grades Development and Study of Reheating Condition Effects on Austenite Grain Size Changes.
    Kvackaj T; Bidulská J; Bidulský R
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921092
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Super-strong dislocation-structured high-carbon martensite steel.
    Sun JJ; Liu YN; Zhu YT; Lian FL; Liu HJ; Jiang T; Guo SW; Liu WQ; Ren XB
    Sci Rep; 2017 Jul; 7(1):6596. PubMed ID: 28747764
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of substitution of Mn by Fe and Cr on the martensitic transition in the Ni50Mn34In16 alloy.
    Sharma VK; Chattopadhyay MK; Nath SK; Sokhey KJ; Kumar R; Tiwari P; Roy SB
    J Phys Condens Matter; 2010 Dec; 22(48):486007. PubMed ID: 21406765
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microstructure Design of Tempered Martensite by Atomistically Informed Full-Field Simulation: From Quenching to Fracture.
    Borukhovich E; Du G; Stratmann M; Boeff M; Shchyglo O; Hartmaier A; Steinbach I
    Materials (Basel); 2016 Aug; 9(8):. PubMed ID: 28773791
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of Alloying Elements on the Dynamic Recrystallization of 4 wt.-% Medium Manganese Steels.
    Gramlich A; Schäfers H; Krupp U
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33212806
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Austenite grain growth simulation considering the solute-drag effect and pinning effect.
    Fujiyama N; Nishibata T; Seki A; Hirata H; Kojima K; Ogawa K
    Sci Technol Adv Mater; 2017; 18(1):88-95. PubMed ID: 28179962
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Atom probe study of the carbon distribution in a hardened martensitic hot-work tool steel X38CrMoV5-1.
    Lerchbacher C; Zinner S; Leitner H
    Micron; 2012 Jul; 43(7):818-26. PubMed ID: 22391101
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fine microstructure formation in steel under ultrafast heating and cooling.
    Yonemura M; Nishibata H; Fujimura R; Ooura N; Hata K; Fujiwara K; Kawano K; Yamaguchi I; Terai T; Inubushi Y; Inoue I; Yabuuchi T; Tono K; Yabashi M
    Sci Rep; 2022 Feb; 12(1):2237. PubMed ID: 35140299
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantum-mechanical analysis of effect of alloying elements on ε-martensite start temperature of steels.
    Jang JH; Moon J; Ha HY; Lee TH; Suh DW
    Sci Rep; 2017 Dec; 7(1):17860. PubMed ID: 29259306
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels.
    Cao W; Zhang M; Huang C; Xiao S; Dong H; Weng Y
    Sci Rep; 2017 Feb; 7():41459. PubMed ID: 28150692
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A New Alloying Concept for Low-Density Steels.
    Hájek J; Nový Z; Kučerová L; Jirková H; Salvetr P; Motyčka P; Hajšman J; Bystřická T
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407871
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of Initial Microstructure on the Toughness of Coarse-Grained Heat-Affected Zone in a Microalloyed Steel.
    Shi M; Di M; Zhang J; Kannan R; Li J; Yuan X; Li L
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443282
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In-situ SEM observation of grain growth in the austenitic region of carbon steel using thermal etching.
    Heard R; Dragnevski KI; Siviour CR
    J Microsc; 2020 Sep; 279(3):249-255. PubMed ID: 32259284
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Austenite Grain Growth Analysis in a Welded Joint of High-Strength Martensitic Abrasion-Resistant Steel Hardox 450.
    Konat Ł; Zemlik M; Jasiński R; Grygier D
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34073431
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanical Behavior of Multi-Phase Steels Comprising Retained Austenite.
    Perdahcıoğlu ES; Geijselaers HJM
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.