These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 25801292)

  • 1. Detection of oxidative stress-induced carbonylation in live mammalian cells.
    Mukherjee K; Chio TI; Sackett DL; Bane SL
    Free Radic Biol Med; 2015 Jul; 84():11-21. PubMed ID: 25801292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benzocoumarin Hydrazine: A Large Stokes Shift Fluorogenic Sensor for Detecting Carbonyls in Isolated Biomolecules and in Live Cells.
    Mukherjee K; Chio TI; Gu H; Banerjee A; Sorrentino AM; Sackett DL; Bane SL
    ACS Sens; 2017 Jan; 2(1):128-134. PubMed ID: 28722432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of oxidative stress-induced carbonylation in live mammalian cells.
    Mukherjee K; Chio TI; Bane SL
    Methods Enzymol; 2020; 641():165-181. PubMed ID: 32713522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence labeling of carbonylated lipids and proteins in cells using coumarin-hydrazide.
    Vemula V; Ni Z; Fedorova M
    Redox Biol; 2015 Aug; 5():195-204. PubMed ID: 25974625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current Probes for Imaging Carbonylation in Cellular Systems and Their Relevance to Progression of Diseases.
    Dilek O
    Technol Cancer Res Treat; 2022; 21():15330338221137303. PubMed ID: 36345252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of Fluorescent Probes for Bioorthogonal Labeling of Carbonylation in Live Cells.
    Erkan H; Telci D; Dilek O
    Sci Rep; 2020 May; 10(1):7668. PubMed ID: 32376913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-talk between lipid and protein carbonylation in a dynamic cardiomyocyte model of mild nitroxidative stress.
    Griesser E; Vemula V; Raulien N; Wagner U; Reeg S; Grune T; Fedorova M
    Redox Biol; 2017 Apr; 11():438-455. PubMed ID: 28086193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ visualization of carbonylation and its co-localization with proteins, lipids, DNA and RNA in Caenorhabditis elegans.
    Kuzmic M; Javot H; Bonzom JM; Lecomte-Pradines C; Radman M; Garnier-Laplace J; Frelon S
    Free Radic Biol Med; 2016 Dec; 101():465-474. PubMed ID: 27840319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic quantification and identification of carbonylated proteins upon oxidative stress and during cellular aging.
    Baraibar MA; Ladouce R; Friguet B
    J Proteomics; 2013 Oct; 92():63-70. PubMed ID: 23689083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of oxidized and HNE-modified proteins in U87 cells.
    Jung T; Engels M; Kaiser B; Grune T
    Biofactors; 2005; 24(1-4):165-70. PubMed ID: 16403977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome-wide profiling of carbonylated proteins and carbonylation sites in HeLa cells under mild oxidative stress conditions.
    Bollineni RC; Hoffmann R; Fedorova M
    Free Radic Biol Med; 2014 Mar; 68():186-95. PubMed ID: 24321318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of oxidative stress-induced protein carbonylation using fluorescent hydrazides.
    Tamarit J; de Hoogh A; Obis E; Alsina D; Cabiscol E; Ros J
    J Proteomics; 2012 Jun; 75(12):3778-88. PubMed ID: 22579746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FTSC-Labeling Coupled with 2DE-LC-MS/MS Analysis of Complex Protein Mixtures for Identification and Relative Quantification of Tissue Carbonylome.
    Méndez L; Barros L; Muñoz S; Medina I
    Methods Mol Biol; 2021; 2259():227-246. PubMed ID: 33687719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of three simple direct or indirect carbonyl detection methods for characterization of oxidative modifications of proteins.
    Vásquez-Garzón VR; Rouimi P; Jouanin I; Waeg G; Zarkovic N; Villa-Treviño S; Guéraud F
    Toxicol Mech Methods; 2012 May; 22(4):296-304. PubMed ID: 22475225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbonylation of platelet proteins occurs as consequence of oxidative stress and thrombin activation, and is stimulated by ageing and type 2 diabetes.
    Alexandru N; Constantin A; Popov D
    Clin Chem Lab Med; 2008; 46(4):528-36. PubMed ID: 18302528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies.
    Fedorova M; Bollineni RC; Hoffmann R
    Mass Spectrom Rev; 2014; 33(2):79-97. PubMed ID: 23832618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of protein carbonylation following oxidative stress in wild-type and sigB Bacillus subtilis cells.
    Mostertz J; Hecker M
    Mol Genet Genomics; 2003 Aug; 269(5):640-8. PubMed ID: 12845527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmarking of protein carbonylation analysis in Caenorhabditis elegans: specific considerations and general advice.
    Pyr Dit Ruys S; Bonzom JM; Frelon S
    Free Radic Biol Med; 2016 Oct; 99():364-373. PubMed ID: 27521457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbonylation of glycolytic proteins is a key response to drug-induced oxidative stress and apoptosis.
    England K; O'Driscoll C; Cotter TG
    Cell Death Differ; 2004 Mar; 11(3):252-60. PubMed ID: 14631408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification, quantification, and functional aspects of skeletal muscle protein-carbonylation in vivo during acute oxidative stress.
    Fedorova M; Kuleva N; Hoffmann R
    J Proteome Res; 2010 May; 9(5):2516-26. PubMed ID: 20377239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.