These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 25801603)
1. Phospholipid Ether Linkages Significantly Modulate the Membrane Affinity of the Antimicrobial Peptide Novicidin. Vad BS; Balakrishnan VS; Nielsen SB; Otzen DE J Membr Biol; 2015 Jun; 248(3):487-96. PubMed ID: 25801603 [TBL] [Abstract][Full Text] [Related]
2. Novicidin's membrane permeabilizing activity is driven by membrane partitioning but not by helicity: a biophysical study of the impact of lipid charge and cholesterol. Balakrishnan VS; Vad BS; Otzen DE Biochim Biophys Acta; 2013 Jun; 1834(6):996-1002. PubMed ID: 23562965 [TBL] [Abstract][Full Text] [Related]
3. Long-term-stable ether-lipid vs conventional ester-lipid bicelles in oriented solid-state NMR: altered structural information in studies of antimicrobial peptides. Bertelsen K; Vad B; Nielsen EH; Hansen SK; Skrydstrup T; Otzen DE; Vosegaard T; Nielsen NC J Phys Chem B; 2011 Mar; 115(8):1767-74. PubMed ID: 21309516 [TBL] [Abstract][Full Text] [Related]
4. Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure. Wieprecht T; Beyermann M; Seelig J Biochemistry; 1999 Aug; 38(32):10377-87. PubMed ID: 10441132 [TBL] [Abstract][Full Text] [Related]
5. Interactions of the Australian tree frog antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with lipid model membranes: differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Seto GW; Marwaha S; Kobewka DM; Lewis RN; Separovic F; McElhaney RN Biochim Biophys Acta; 2007 Nov; 1768(11):2787-800. PubMed ID: 17825246 [TBL] [Abstract][Full Text] [Related]
6. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes. Arouri A; Dathe M; Blume A Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704 [TBL] [Abstract][Full Text] [Related]
7. Divorcing folding from function: how acylation affects the membrane-perturbing properties of an antimicrobial peptide. Vad B; Thomsen LA; Bertelsen K; Franzmann M; Pedersen JM; Nielsen SB; Vosegaard T; Valnickova Z; Skrydstrup T; Enghild JJ; Wimmer R; Nielsen NC; Otzen DE Biochim Biophys Acta; 2010 Apr; 1804(4):806-20. PubMed ID: 20026432 [TBL] [Abstract][Full Text] [Related]
8. Isothermal calorimetry study of the interactions of type I antifreeze proteins with a lipid model membrane. Kun H; Mastai Y Protein Pept Lett; 2010 Jun; 17(6):739-43. PubMed ID: 19995337 [TBL] [Abstract][Full Text] [Related]
9. The relationship between the binding to and permeabilization of phospholipid bilayer membranes by GS14dK4, a designed analog of the antimicrobial peptide gramicidin S. Abraham T; Marwaha S; Kobewka DM; Lewis RN; Prenner EJ; Hodges RS; McElhaney RN Biochim Biophys Acta; 2007 Sep; 1768(9):2089-98. PubMed ID: 17686454 [TBL] [Abstract][Full Text] [Related]
10. Membrane activity of two short Trp-rich amphipathic peptides. Bozelli JC; Yune J; Dang X; Narayana JL; Wang G; Epand RM Biochim Biophys Acta Biomembr; 2020 Jul; 1862(7):183280. PubMed ID: 32220553 [TBL] [Abstract][Full Text] [Related]
11. Branched phospholipids render lipid vesicles more susceptible to membrane-active peptides. Mitchell NJ; Seaton P; Pokorny A Biochim Biophys Acta; 2016 May; 1858(5):988-94. PubMed ID: 26514602 [TBL] [Abstract][Full Text] [Related]
12. Effects of lipid membrane curvature on lipid packing state evaluated by isothermal titration calorimetry. Yokoyama H; Ikeda K; Wakabayashi M; Ishihama Y; Nakano M Langmuir; 2013 Jan; 29(3):857-60. PubMed ID: 23270307 [TBL] [Abstract][Full Text] [Related]
16. Solution structure and interaction of the antimicrobial polyphemusins with lipid membranes. Powers JP; Tan A; Ramamoorthy A; Hancock RE Biochemistry; 2005 Nov; 44(47):15504-13. PubMed ID: 16300399 [TBL] [Abstract][Full Text] [Related]
17. Peripheral and integral membrane binding of peptides characterized by time-dependent fluorescence shifts: focus on antimicrobial peptide LAH₄. Macháň R; Jurkiewicz P; Olżyńska A; Olšinová M; Cebecauer M; Marquette A; Bechinger B; Hof M Langmuir; 2014 Jun; 30(21):6171-9. PubMed ID: 24807004 [TBL] [Abstract][Full Text] [Related]
18. Control and role of pH in peptide-lipid interactions in oriented membrane samples. Misiewicz J; Afonin S; Ulrich AS Biochim Biophys Acta; 2015 Mar; 1848(3):833-41. PubMed ID: 25511586 [TBL] [Abstract][Full Text] [Related]
19. Solution structure and membrane interactions of the antimicrobial peptide fallaxidin 4.1a: an NMR and QCM study. Sherman PJ; Jackway RJ; Gehman JD; Praporski S; McCubbin GA; Mechler A; Martin LL; Separovic F; Bowie JH Biochemistry; 2009 Dec; 48(50):11892-901. PubMed ID: 19894755 [TBL] [Abstract][Full Text] [Related]
20. The interfacial structure of phospholipid bilayers: differential scanning calorimetry and Fourier transform infrared spectroscopic studies of 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine and its dialkyl and acyl-alkyl analogs. Lewis RN; Pohle W; McElhaney RN Biophys J; 1996 Jun; 70(6):2736-46. PubMed ID: 8744311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]