These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Effect of head group and curvature on binding of the antimicrobial peptide tritrpticin to lipid membranes. Bozelli JC; Sasahara ET; Pinto MR; Nakaie CR; Schreier S Chem Phys Lipids; 2012 May; 165(4):365-73. PubMed ID: 22209923 [TBL] [Abstract][Full Text] [Related]
23. Deletion of all cysteines in tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and lipopolysaccharide selective binding. Ramamoorthy A; Thennarasu S; Tan A; Gottipati K; Sreekumar S; Heyl DL; An FY; Shelburne CE Biochemistry; 2006 May; 45(20):6529-40. PubMed ID: 16700563 [TBL] [Abstract][Full Text] [Related]
24. Isothermal titration calorimetry studies of the binding of a rationally designed analogue of the antimicrobial peptide gramicidin s to phospholipid bilayer membranes. Abraham T; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2005 Feb; 44(6):2103-12. PubMed ID: 15697236 [TBL] [Abstract][Full Text] [Related]
25. Isothermal titration calorimetry studies of the binding of the antimicrobial peptide gramicidin S to phospholipid bilayer membranes. Abraham T; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2005 Aug; 44(33):11279-85. PubMed ID: 16101312 [TBL] [Abstract][Full Text] [Related]
26. Cellular Membrane Composition Requirement by Antimicrobial and Anticancer Peptide GA-K4. Mishig-Ochir T; Gombosuren D; Jigjid A; Tuguldur B; Chuluunbaatar G; Urnukhsaikhan E; Pathak C; Lee BJ Protein Pept Lett; 2017; 24(3):197-205. PubMed ID: 27993125 [TBL] [Abstract][Full Text] [Related]
27. Interplay of entropy and enthalpy in peptide binding to zwitterionic phospholipid membranes as revealed from membrane thinning. Su CJ; Lee MT; Liao KF; Shih O; Jeng US Phys Chem Chem Phys; 2018 Oct; 20(42):26830-26836. PubMed ID: 30137074 [TBL] [Abstract][Full Text] [Related]
28. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX; Damodaran K; Blazyk J; Lorigan GA Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398 [TBL] [Abstract][Full Text] [Related]
29. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain. Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844 [TBL] [Abstract][Full Text] [Related]
30. Effect of antimicrobial peptide on the dynamics of phosphocholine membrane: role of cholesterol and physical state of bilayer. Sharma VK; Mamontov E; Anunciado DB; O'Neill H; Urban VS Soft Matter; 2015 Sep; 11(34):6755-67. PubMed ID: 26212615 [TBL] [Abstract][Full Text] [Related]
31. Cationic peptide-induced remodelling of model membranes: direct visualization by in situ atomic force microscopy. Shaw JE; Epand RF; Hsu JC; Mo GC; Epand RM; Yip CM J Struct Biol; 2008 Apr; 162(1):121-38. PubMed ID: 18180166 [TBL] [Abstract][Full Text] [Related]
32. Membrane perturbation by the antimicrobial peptide PMAP-23: a fluorescence and molecular dynamics study. Orioni B; Bocchinfuso G; Kim JY; Palleschi A; Grande G; Bobone S; Park Y; Kim JI; Hahm KS; Stella L Biochim Biophys Acta; 2009 Jul; 1788(7):1523-33. PubMed ID: 19397893 [TBL] [Abstract][Full Text] [Related]
33. Comparative study on the interaction of cell-penetrating polycationic polymers with lipid membranes. Takechi Y; Tanaka H; Kitayama H; Yoshii H; Tanaka M; Saito H Chem Phys Lipids; 2012 Jan; 165(1):51-8. PubMed ID: 22108318 [TBL] [Abstract][Full Text] [Related]
34. Real-time quantitative analysis of lipid disordering by aurein 1.2 during membrane adsorption, destabilisation and lysis. Lee TH; Heng C; Swann MJ; Gehman JD; Separovic F; Aguilar MI Biochim Biophys Acta; 2010 Oct; 1798(10):1977-86. PubMed ID: 20599687 [TBL] [Abstract][Full Text] [Related]
35. Thermotropic and barotropic phase transitions in bilayer membranes of ether-linked phospholipids with varying alkyl chain lengths. Matsuki H; Miyazaki E; Sakano F; Tamai N; Kaneshina S Biochim Biophys Acta; 2007 Mar; 1768(3):479-89. PubMed ID: 17141731 [TBL] [Abstract][Full Text] [Related]
36. Influence of Eugenol on the Organization and Dynamics of Lipid Membranes: A Phase-Dependent Study. Meher G; Chakraborty H Langmuir; 2018 Feb; 34(6):2344-2351. PubMed ID: 29323916 [TBL] [Abstract][Full Text] [Related]
37. Effects and mechanisms of the secondary structure on the antimicrobial activity and specificity of antimicrobial peptides. Mai XT; Huang J; Tan J; Huang Y; Chen Y J Pept Sci; 2015 Jul; 21(7):561-8. PubMed ID: 25826179 [TBL] [Abstract][Full Text] [Related]
38. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199 [TBL] [Abstract][Full Text] [Related]
39. Interaction of hydrophobic and amphipathic antimicrobial peptides with lipid bicelles. Bortolus M; Dalzini A; Toniolo C; Hahm KS; Maniero AL J Pept Sci; 2014 Jul; 20(7):517-25. PubMed ID: 24863176 [TBL] [Abstract][Full Text] [Related]
40. Resolving the structural interactions between antimicrobial peptides and lipid membranes using small-angle scattering methods: the case of indolicidin. Nielsen JE; Bjørnestad VA; Lund R Soft Matter; 2018 Nov; 14(43):8750-8763. PubMed ID: 30358793 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]