These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
602 related articles for article (PubMed ID: 25801735)
41. Lithium-Ion Conductive Coatings for Nickel-Rich Cathodes for Lithium-Ion Batteries. Shao Y; Xu J; Amardeep A; Xia Y; Meng X; Liu J; Liao S Small Methods; 2024 May; ():e2400256. PubMed ID: 38708816 [TBL] [Abstract][Full Text] [Related]
42. Surface Modification on Nickel Rich Cathode Materials for Lithium-Ion Cells: A Mini Review. Akhilash M; Salini PS; John B; Sujatha S; Mercy TD Chem Rec; 2023 Nov; 23(11):e202300132. PubMed ID: 37395417 [TBL] [Abstract][Full Text] [Related]
43. Tracking the Influence of Thermal Expansion and Oxygen Vacancies on the Thermal Stability of Ni-Rich Layered Cathode Materials. Lee E; Muhammad S; Kim T; Kim H; Lee W; Yoon WS Adv Sci (Weinh); 2020 Jun; 7(12):1902413. PubMed ID: 32596103 [TBL] [Abstract][Full Text] [Related]
44. Role of Cobalt Content in Improving the Low-Temperature Performance of Layered Lithium-Rich Cathode Materials for Lithium-Ion Batteries. Kou J; Chen L; Su Y; Bao L; Wang J; Li N; Li W; Wang M; Chen S; Wu F ACS Appl Mater Interfaces; 2015 Aug; 7(32):17910-8. PubMed ID: 26222273 [TBL] [Abstract][Full Text] [Related]
45. Identifying Active Sites for Parasitic Reactions at the Cathode-Electrolyte Interface. Xie Y; Gao H; Gim J; Ngo AT; Ma ZF; Chen Z J Phys Chem Lett; 2019 Feb; 10(3):589-594. PubMed ID: 30668123 [TBL] [Abstract][Full Text] [Related]
46. Understanding the Origin of Enhanced Performances in Core-Shell and Concentration-Gradient Layered Oxide Cathode Materials. Song D; Hou P; Wang X; Shi X; Zhang L ACS Appl Mater Interfaces; 2015 Jun; 7(23):12864-72. PubMed ID: 26017733 [TBL] [Abstract][Full Text] [Related]
47. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Lu Z; Wang H; Kong D; Yan K; Hsu PC; Zheng G; Yao H; Liang Z; Sun X; Cui Y Nat Commun; 2014 Jul; 5():4345. PubMed ID: 24993836 [TBL] [Abstract][Full Text] [Related]
48. Organo-Soluble Decanoic Acid-Modified Ni-Rich Cathode Material LiNi Gao M; Wang Y; Cui S; Liu S; Gao XP; Li G ACS Appl Mater Interfaces; 2022 Apr; 14(14):16348-16356. PubMed ID: 35353483 [TBL] [Abstract][Full Text] [Related]
49. Spinel/Layered Heterostructured Lithium-Rich Oxide Nanowires as Cathode Material for High-Energy Lithium-Ion Batteries. Yu R; Zhang X; Liu T; Yang L; Liu L; Wang Y; Wang X; Shu H; Yang X ACS Appl Mater Interfaces; 2017 Nov; 9(47):41210-41223. PubMed ID: 29115815 [TBL] [Abstract][Full Text] [Related]
50. Improvement of the Cycling Performance and Thermal Stability of Lithium-Ion Cells by Double-Layer Coating of Cathode Materials with Al₂O₃ Nanoparticles and Conductive Polymer. Lee YS; Shin WK; Kannan AG; Koo SM; Kim DW ACS Appl Mater Interfaces; 2015 Jul; 7(25):13944-51. PubMed ID: 26083766 [TBL] [Abstract][Full Text] [Related]
51. Advances of LiCoO Ma H; Wang F; Shen M; Tong Y; Wang H; Hu H Small Methods; 2024 Jun; 8(6):e2300820. PubMed ID: 38150645 [TBL] [Abstract][Full Text] [Related]
52. Accelerated Evolution of Surface Chemistry Determined by Temperature and Cycling History in Nickel-Rich Layered Cathode Materials. Steiner JD; Mu L; Walsh J; Rahman MM; Zydlewski B; Michel FM; Xin HL; Nordlund D; Lin F ACS Appl Mater Interfaces; 2018 Jul; 10(28):23842-23850. PubMed ID: 29920072 [TBL] [Abstract][Full Text] [Related]
53. Core/Double-Shell Type Gradient Ni-Rich LiNi0.76Co0.10Mn0.14O2 with High Capacity and Long Cycle Life for Lithium-Ion Batteries. Liao JY; Oh SM; Manthiram A ACS Appl Mater Interfaces; 2016 Sep; 8(37):24543-9. PubMed ID: 27571031 [TBL] [Abstract][Full Text] [Related]
54. Building Honeycomb-Like Hollow Microsphere Architecture in a Bubble Template Reaction for High-Performance Lithium-Rich Layered Oxide Cathode Materials. Chen Z; Yan X; Xu M; Cao K; Zhu H; Li L; Duan J ACS Appl Mater Interfaces; 2017 Sep; 9(36):30617-30625. PubMed ID: 28828854 [TBL] [Abstract][Full Text] [Related]
55. Developments in Surface/Interface Engineering of Ni-Rich Layered Cathode Materials. Wang X; Ruan X; Du CF; Yu H Chem Rec; 2022 Oct; 22(10):e202200119. PubMed ID: 35733083 [TBL] [Abstract][Full Text] [Related]
56. Ni-Rich LiNi Chen S; He T; Su Y; Lu Y; Bao L; Chen L; Zhang Q; Wang J; Chen R; Wu F ACS Appl Mater Interfaces; 2017 Sep; 9(35):29732-29743. PubMed ID: 28799739 [TBL] [Abstract][Full Text] [Related]
57. In Situ Observation of the Effect of Accelerating Voltage on Electron Beam Damage of Layered Cathode Materials for Lithium-Ion Batteries. Shim JH; Kang H; Kim YM; Lee S ACS Appl Mater Interfaces; 2019 Nov; 11(47):44293-44299. PubMed ID: 31687809 [TBL] [Abstract][Full Text] [Related]
58. Na-rich layered Na Song S; Kotobuki M; Chen Y; Manzhos S; Xu C; Hu N; Lu L Sci Rep; 2017 Mar; 7(1):373. PubMed ID: 28336964 [TBL] [Abstract][Full Text] [Related]
59. Surface Stabilization of Ni-Rich Layered Cathode Materials via Surface Engineering with LiTaO Lee HB; Dinh Hoang T; Byeon YS; Jung H; Moon J; Park MS ACS Appl Mater Interfaces; 2022 Jan; 14(2):2731-2741. PubMed ID: 34985861 [TBL] [Abstract][Full Text] [Related]
60. A versatile single molecular precursor for the synthesis of layered oxide cathode materials for Li-ion batteries. Li M; Liu J; Liu T; Zhang M; Pan F Chem Commun (Camb); 2018 Feb; 54(11):1331-1334. PubMed ID: 29349459 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]