These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 25801767)

  • 21. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos.
    Xue Y; Yuwen T; Zhu F; Skrynnikov NR
    Biochemistry; 2014 Oct; 53(41):6473-95. PubMed ID: 25207671
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins.
    Grabbe C; Dikic I
    Chem Rev; 2009 Apr; 109(4):1481-94. PubMed ID: 19253967
    [No Abstract]   [Full Text] [Related]  

  • 23. Dop functions as a depupylase in the prokaryotic ubiquitin-like modification pathway.
    Imkamp F; Striebel F; Sutter M; Ozcelik D; Zimmermann N; Sander P; Weber-Ban E
    EMBO Rep; 2010 Oct; 11(10):791-7. PubMed ID: 20798673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal ions and intrinsically disordered proteins and peptides: from Cu/Zn amyloid-β to general principles.
    Faller P; Hureau C; La Penna G
    Acc Chem Res; 2014 Aug; 47(8):2252-9. PubMed ID: 24871565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Potent Inhibitors of Mycobacterium tuberculosis Growth Identified by Using in-Cell NMR-based Screening.
    DeMott CM; Girardin R; Cobbert J; Reverdatto S; Burz DS; McDonough K; Shekhtman A
    ACS Chem Biol; 2018 Mar; 13(3):733-741. PubMed ID: 29359908
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intrinsically disordered proteins and intrinsically disordered protein regions.
    Oldfield CJ; Dunker AK
    Annu Rev Biochem; 2014; 83():553-84. PubMed ID: 24606139
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pupylation-dependent and -independent proteasomal degradation in mycobacteria.
    Imkamp F; Ziemski M; Weber-Ban E
    Biomol Concepts; 2015 Aug; 6(4):285-301. PubMed ID: 26352358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prokaryotic ubiquitin-like protein (Pup), proteasomes and pathogenesis.
    Darwin KH
    Nat Rev Microbiol; 2009 Jul; 7(7):485-91. PubMed ID: 19483713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reconstitution of the Mycobacterium tuberculosis pupylation pathway in Escherichia coli.
    Cerda-Maira FA; McAllister F; Bode NJ; Burns KE; Gygi SP; Darwin KH
    EMBO Rep; 2011 Jul; 12(8):863-70. PubMed ID: 21738222
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unraveling the biochemistry and provenance of pupylation: a prokaryotic analog of ubiquitination.
    Iyer LM; Burroughs AM; Aravind L
    Biol Direct; 2008 Nov; 3():45. PubMed ID: 18980670
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The binding mechanisms of intrinsically disordered proteins.
    Dogan J; Gianni S; Jemth P
    Phys Chem Chem Phys; 2014 Apr; 16(14):6323-31. PubMed ID: 24317797
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural biology of intrinsically disordered proteins: Revisiting unsolved mysteries.
    Sigalov AB
    Biochimie; 2016 Jun; 125():112-8. PubMed ID: 27004461
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intrinsically disordered proteins: emerging interaction specialists.
    Tompa P; Schad E; Tantos A; Kalmar L
    Curr Opin Struct Biol; 2015 Dec; 35():49-59. PubMed ID: 26402567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GPS-PUP: computational prediction of pupylation sites in prokaryotic proteins.
    Liu Z; Ma Q; Cao J; Gao X; Ren J; Xue Y
    Mol Biosyst; 2011 Oct; 7(10):2737-40. PubMed ID: 21850344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural flexibility of intrinsically disordered proteins induces stepwise target recognition.
    Shirai NC; Kikuchi M
    J Chem Phys; 2013 Dec; 139(22):225103. PubMed ID: 24329095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional advantages of dynamic protein disorder.
    Berlow RB; Dyson HJ; Wright PE
    FEBS Lett; 2015 Sep; 589(19 Pt A):2433-40. PubMed ID: 26073260
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synergistic folding of two intrinsically disordered proteins: searching for conformational selection.
    Ganguly D; Zhang W; Chen J
    Mol Biosyst; 2012 Jan; 8(1):198-209. PubMed ID: 21766125
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ubiquitin Modulates Liquid-Liquid Phase Separation of UBQLN2 via Disruption of Multivalent Interactions.
    Dao TP; Kolaitis RM; Kim HJ; O'Donovan K; Martyniak B; Colicino E; Hehnly H; Taylor JP; Castañeda CA
    Mol Cell; 2018 Mar; 69(6):965-978.e6. PubMed ID: 29526694
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Backbone NMR resonance assignment of the intrinsically disordered UBact protein from Nitrospira nitrosa.
    Bonn SM; Fushman D
    Biomol NMR Assign; 2022 Apr; 16(1):129-134. PubMed ID: 35107780
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ensemble characterization of an intrinsically disordered FG-Nup peptide and its F>A mutant in DMSO-d
    Reid KM; Sunanda P; Raghothama S; Krishnan VV
    Biopolymers; 2017 Nov; 108(6):. PubMed ID: 28734076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.