These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
396 related articles for article (PubMed ID: 25801848)
1. Nanocomposite membranes based on polybenzimidazole and ZrO2 for high-temperature proton exchange membrane fuel cells. Nawn G; Pace G; Lavina S; Vezzù K; Negro E; Bertasi F; Polizzi S; Di Noto V ChemSusChem; 2015 Apr; 8(8):1381-93. PubMed ID: 25801848 [TBL] [Abstract][Full Text] [Related]
2. High-temperature proton-exchange-membrane fuel cells using an ether-containing polybenzimidazole membrane as electrolyte. Li J; Li X; Zhao Y; Lu W; Shao Z; Yi B ChemSusChem; 2012 May; 5(5):896-900. PubMed ID: 22529063 [TBL] [Abstract][Full Text] [Related]
4. Promising aquivion composite membranes based on fluoroalkyl zirconium phosphate for fuel cell applications. Donnadio A; Pica M; Subianto S; Jones DJ; Cojocaru P; Casciola M ChemSusChem; 2014 Aug; 7(8):2176-84. PubMed ID: 24975037 [TBL] [Abstract][Full Text] [Related]
5. Ultrasonic irradiation to modify the functionalized bionanocomposite in sulfonated polybenzimidazole membrane for fuel cells applications and antibacterial activity. Esmaeilzade B; Esmaielzadeh S; Ahmadizadegan H Ultrason Sonochem; 2018 Apr; 42():260-270. PubMed ID: 29429669 [TBL] [Abstract][Full Text] [Related]
6. Structure-property interplay of proton conducting membranes based on PBI5N, SiO2-Im and H3PO4 for high temperature fuel cells. Di Noto V; Piga M; Giffin GA; Quartarone E; Righetti P; Mustarelli P; Magistris A Phys Chem Chem Phys; 2011 Jul; 13(26):12146-54. PubMed ID: 21594297 [TBL] [Abstract][Full Text] [Related]
7. Covalently cross-linked sulfone polybenzimidazole membranes with poly(vinylbenzyl chloride) for fuel cell applications. Yang J; Aili D; Li Q; Cleemann LN; Jensen JO; Bjerrum NJ; He R ChemSusChem; 2013 Feb; 6(2):275-82. PubMed ID: 23303655 [TBL] [Abstract][Full Text] [Related]
8. Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells. Tang H; Pan M; Jiang SP Dalton Trans; 2011 May; 40(19):5220-7. PubMed ID: 21455522 [TBL] [Abstract][Full Text] [Related]
9. New nanocomposite hybrid inorganic-organic proton-conducting membranes based on functionalized silica and PTFE. Di Noto V; Piga M; Giffin GA; Negro E; Furlan C; Vezzù K ChemSusChem; 2012 Sep; 5(9):1758-66. PubMed ID: 22807005 [TBL] [Abstract][Full Text] [Related]
10. Raman study of the polybenzimidazole-phosphoric acid interactions in membranes for fuel cells. Conti F; Majerus A; Di Noto V; Korte C; Lehnert W; Stolten D Phys Chem Chem Phys; 2012 Jul; 14(28):10022-6. PubMed ID: 22699788 [TBL] [Abstract][Full Text] [Related]
11. Chitin nanowhisker-supported sulfonated poly(ether sulfone) proton exchange for fuel cell applications. Zhang C; Zhuang X; Li X; Wang W; Cheng B; Kang W; Cai Z; Li M Carbohydr Polym; 2016 Apr; 140():195-201. PubMed ID: 26876844 [TBL] [Abstract][Full Text] [Related]
12. Development of cesium phosphotungstate salt and chitosan composite membrane for direct methanol fuel cells. Xiao Y; Xiang Y; Xiu R; Lu S Carbohydr Polym; 2013 Oct; 98(1):233-40. PubMed ID: 23987340 [TBL] [Abstract][Full Text] [Related]
13. Structure and properties of polybenzimidazole/silica nanocomposite electrolyte membrane: influence of organic/inorganic interface. Singha S; Jana T ACS Appl Mater Interfaces; 2014 Dec; 6(23):21286-96. PubMed ID: 25365766 [TBL] [Abstract][Full Text] [Related]
14. Nanostructured bacterial cellulose-poly(4-styrene sulfonic acid) composite membranes with high storage modulus and protonic conductivity. Gadim TD; Figueiredo AG; Rosero-Navarro NC; Vilela C; Gamelas JA; Barros-Timmons A; Neto CP; Silvestre AJ; Freire CS; Figueiredo FM ACS Appl Mater Interfaces; 2014 May; 6(10):7864-75. PubMed ID: 24731218 [TBL] [Abstract][Full Text] [Related]
15. Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report. Steininger H; Schuster M; Kreuer KD; Kaltbeitzel A; Bingöl B; Meyer WH; Schauff S; Brunklaus G; Maier J; Spiess HW Phys Chem Chem Phys; 2007 Apr; 9(15):1764-73. PubMed ID: 17415487 [TBL] [Abstract][Full Text] [Related]
16. Preparation of nano-structured polymeric proton conducting membranes for use in fuel cells. Alberti G; Casciola M; Pica M; Di Cesare G Ann N Y Acad Sci; 2003 Mar; 984():208-25. PubMed ID: 12783819 [TBL] [Abstract][Full Text] [Related]
17. A microfluidic approach to synthesizing high-performance microfibers with tunable anhydrous proton conductivity. Hasani-Sadrabadi MM; VanDersarl JJ; Dashtimoghadam E; Bahlakeh G; Majedi FS; Mokarram N; Bertsch A; Jacob KI; Renaud P Lab Chip; 2013 Dec; 13(23):4549-53. PubMed ID: 24113644 [TBL] [Abstract][Full Text] [Related]
18. Characterization of sulfonated poly(ether ether ketone)/silane nanocomposite membrane for high temperature polymer electrolyte membrane fuel cells. Ghil LJ; Kim CK; Park NR; Rhee HW J Nanosci Nanotechnol; 2011 Jan; 11(1):331-4. PubMed ID: 21446450 [TBL] [Abstract][Full Text] [Related]
19. Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications. Liu H; Gong C; Wang J; Liu X; Liu H; Cheng F; Wang G; Zheng G; Qin C; Wen S Carbohydr Polym; 2016 Jan; 136():1379-85. PubMed ID: 26572483 [TBL] [Abstract][Full Text] [Related]
20. Anhydrous phosphoric Acid functionalized sintered mesoporous silica nanocomposite proton exchange membranes for fuel cells. Zeng J; He B; Lamb K; De Marco R; Shen PK; Jiang SP ACS Appl Mater Interfaces; 2013 Nov; 5(21):11240-8. PubMed ID: 24125494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]