These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 25801953)
1. An electrochemical DNA biosensor for evaluating the effect of mix anion in cellular fluid on the antioxidant activity of CeO2 nanoparticles. Zhai Y; Zhang Y; Qin F; Yao X Biosens Bioelectron; 2015 Aug; 70():130-6. PubMed ID: 25801953 [TBL] [Abstract][Full Text] [Related]
2. The vital role of buffer anions in the antioxidant activity of CeO2 nanoparticles. Xue Y; Zhai Y; Zhou K; Wang L; Tan H; Luan Q; Yao X Chemistry; 2012 Aug; 18(35):11115-22. PubMed ID: 22807390 [TBL] [Abstract][Full Text] [Related]
3. Antioxidant and anti-genotoxic properties of cerium oxide nanoparticles in a pulmonary-like cell system. Rubio L; Annangi B; Vila L; Hernández A; Marcos R Arch Toxicol; 2016 Feb; 90(2):269-78. PubMed ID: 25618551 [TBL] [Abstract][Full Text] [Related]
4. DNA-based biosensor for the electrocatalytic determination of antioxidant capacity in beverages. Barroso MF; de-los-Santos-Álvarez N; Lobo-Castañón MJ; Miranda-Ordieres AJ; Delerue-Matos C; Oliveira MB; Tuñón-Blanco P Biosens Bioelectron; 2011 Jan; 26(5):2396-401. PubMed ID: 21067909 [TBL] [Abstract][Full Text] [Related]
5. Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity. Pešić M; Podolski-Renić A; Stojković S; Matović B; Zmejkoski D; Kojić V; Bogdanović G; Pavićević A; Mojović M; Savić A; Milenković I; Kalauzi A; Radotić K Chem Biol Interact; 2015 May; 232():85-93. PubMed ID: 25813935 [TBL] [Abstract][Full Text] [Related]
6. Intracellular antioxidants dissolve man-made antioxidant nanoparticles: using redox vulnerability of nanoceria to develop a responsive drug delivery system. Muhammad F; Wang A; Qi W; Zhang S; Zhu G ACS Appl Mater Interfaces; 2014; 6(21):19424-33. PubMed ID: 25312332 [TBL] [Abstract][Full Text] [Related]
7. Enzymatic glucose biosensor based on CeO2 nanorods synthesized by non-isothermal precipitation. Patil D; Dung NQ; Jung H; Ahn SY; Jang DM; Kim D Biosens Bioelectron; 2012 Jan; 31(1):176-81. PubMed ID: 22035972 [TBL] [Abstract][Full Text] [Related]
8. Anti-inflammatory and antioxidant effect of cerium dioxide nanoparticles immobilized on the surface of silica nanoparticles in rat experimental pneumonia. Serebrovska Z; Swanson RJ; Portnichenko V; Shysh A; Pavlovich S; Tumanovska L; Dorovskych A; Lysenko V; Tertykh V; Bolbukh Y; Dosenko V Biomed Pharmacother; 2017 Aug; 92():69-77. PubMed ID: 28531802 [TBL] [Abstract][Full Text] [Related]
9. Glutathione replenishing potential of CeO₂ nanoparticles in human breast and fibrosarcoma cells. Akhtar MJ; Ahamed M; Alhadlaq HA; Khan MAM; Alrokayan SA J Colloid Interface Sci; 2015 Sep; 453():21-27. PubMed ID: 25965428 [TBL] [Abstract][Full Text] [Related]
10. [Progress of the study on DNA electrochemical biosensor]. Zhao Y; Zhang H; Wu X; Liu Z; Wang J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Feb; 30(1):208-12. PubMed ID: 23488166 [TBL] [Abstract][Full Text] [Related]
11. An ionic liquid supported CeO2 nanoshuttles-carbon nanotubes composite as a platform for impedance DNA hybridization sensing. Zhang W; Yang T; Zhuang X; Guo Z; Jiao K Biosens Bioelectron; 2009 Apr; 24(8):2417-22. PubMed ID: 19167208 [TBL] [Abstract][Full Text] [Related]
12. Reactive oxygen species scavenging properties of ZrO2-CeO2 solid solution nanoparticles. Tsai YY; Oca-Cossio J; Lin SM; Woan K; Yu PC; Sigmund W Nanomedicine (Lond); 2008 Oct; 3(5):637-45. PubMed ID: 18817467 [TBL] [Abstract][Full Text] [Related]
13. Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles. Dahle JT; Arai Y Int J Environ Res Public Health; 2015 Jan; 12(2):1253-78. PubMed ID: 25625406 [TBL] [Abstract][Full Text] [Related]
14. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii. Röhder LA; Brandt T; Sigg L; Behra R Aquat Toxicol; 2014 Jul; 152():121-30. PubMed ID: 24747084 [TBL] [Abstract][Full Text] [Related]
15. CeO Sendra M; Yeste PM; Moreno-Garrido I; Gatica JM; Blasco J Sci Total Environ; 2017 Jul; 590-591():304-315. PubMed ID: 28283294 [TBL] [Abstract][Full Text] [Related]
16. Calcein-Modified CeO Chukavin NN; Ivanov VK; Popov AL Cells; 2023 Oct; 12(19):. PubMed ID: 37830630 [TBL] [Abstract][Full Text] [Related]
17. Cerium oxide nanoparticles induce cytotoxicity in human hepatoma SMMC-7721 cells via oxidative stress and the activation of MAPK signaling pathways. Cheng G; Guo W; Han L; Chen E; Kong L; Wang L; Ai W; Song N; Li H; Chen H Toxicol In Vitro; 2013 Apr; 27(3):1082-8. PubMed ID: 23416263 [TBL] [Abstract][Full Text] [Related]
18. The Effect of Cerium Oxide Nanoparticle Valence State on Reactive Oxygen Species and Toxicity. Dunnick KM; Pillai R; Pisane KL; Stefaniak AB; Sabolsky EM; Leonard SS Biol Trace Elem Res; 2015 Jul; 166(1):96-107. PubMed ID: 25778836 [TBL] [Abstract][Full Text] [Related]
19. Cerium dioxide nanoparticles did not alter the functional and morphologic characteristics of ram sperm during short-term exposure. Falchi L; Bogliolo L; Galleri G; Ariu F; Zedda MT; Pinna A; Malfatti L; Innocenzi P; Ledda S Theriogenology; 2016 Apr; 85(7):1274-81.e3. PubMed ID: 26777564 [TBL] [Abstract][Full Text] [Related]
20. Investigations of the antioxidant properties of plant extracts using a DNA-electrochemical biosensor. Mello LD; Hernandez S; Marrazza G; Mascini M; Kubota LT Biosens Bioelectron; 2006 Jan; 21(7):1374-82. PubMed ID: 16002275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]