BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

651 related articles for article (PubMed ID: 25801955)

  • 1. Aggregation induced Raman scattering of squaraine dye: Implementation in diagnosis of cervical cancer dysplasia by SERS imaging.
    Narayanan N; Karunakaran V; Paul W; Venugopal K; Sujathan K; Kumar Maiti K
    Biosens Bioelectron; 2015 Aug; 70():145-52. PubMed ID: 25801955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insight of squaraine-based biocompatible surface-enhanced Raman scattering nanotag for cancer-cell imaging.
    Ramya A; Samanta A; Nisha N; Chang YT; Maiti KK
    Nanomedicine (Lond); 2015 Mar; 10(4):561-71. PubMed ID: 25723090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unveiling NIR Aza-Boron-Dipyrromethene (BODIPY) Dyes as Raman Probes: Surface-Enhanced Raman Scattering (SERS)-Guided Selective Detection and Imaging of Human Cancer Cells.
    Adarsh N; Ramya AN; Maiti KK; Ramaiah D
    Chemistry; 2017 Oct; 23(57):14286-14291. PubMed ID: 28796314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method.
    Lin M; Wang Y; Sun X; Wang W; Chen L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating Raman Image-Guided Differential Recognition of Clinically Confirmed Grades of Cervical Exfoliated Cells by Dual Biomarker-Appended SERS-Tag.
    Karunakaran V; Saritha VN; Ramya AN; Murali VP; Raghu KG; Sujathan K; Maiti KK
    Anal Chem; 2021 Aug; 93(32):11140-11150. PubMed ID: 34348462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gd
    Xiao L; Tian X; Harihar S; Li Q; Li L; Welch DR; Zhou A
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jun; 181():218-225. PubMed ID: 28365452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH; Li D; Simon GP; Garnier G
    Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles.
    Yi Z; Li XY; Liu FJ; Jin PY; Chu X; Yu RQ
    Biosens Bioelectron; 2013 May; 43():308-14. PubMed ID: 23353007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-enhanced Raman scattering dye-labeled Au nanoparticles for triplexed detection of leukemia and lymphoma cells and SERS flow cytometry.
    MacLaughlin CM; Mullaithilaga N; Yang G; Ip SY; Wang C; Walker GC
    Langmuir; 2013 Feb; 29(6):1908-19. PubMed ID: 23360230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competitive reaction pathway for site-selective conjugation of Raman dyes to hotspots on gold nanorods for greatly enhanced SERS performance.
    Huang H; Wang JH; Jin W; Li P; Chen M; Xie HH; Yu XF; Wang H; Dai Z; Xiao X; Chu PK
    Small; 2014 Oct; 10(19):4012-9. PubMed ID: 24947686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold Superparticles Functionalized with Azobenzene Derivatives: SERS Nanotags with Strong Signals.
    Ma Y; Promthaveepong K; Li N
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10530-10536. PubMed ID: 28263056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High surface-enhanced Raman scattering performance of individual gold nanoflowers and their application in live cell imaging.
    Li Q; Jiang Y; Han R; Zhong X; Liu S; Li ZY; Sha Y; Xu D
    Small; 2013 Mar; 9(6):927-32. PubMed ID: 23180641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Squaraines as unique reporters for SERRS multiplexing.
    Stokes RJ; Ingram A; Gallagher J; Armstrong DR; Smith WE; Graham D
    Chem Commun (Camb); 2008 Feb; (5):567-9. PubMed ID: 18209791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging.
    Lee S; Chon H; Lee J; Ko J; Chung BH; Lim DW; Choo J
    Biosens Bioelectron; 2014 Jan; 51():238-43. PubMed ID: 23973735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-resolution study of in situ surface-enhanced Raman scattering nanotag behavior in biological systems.
    Wang J; Anderson W; Li J; Lin LL; Wang Y; Trau M
    J Colloid Interface Sci; 2019 Mar; 537():536-546. PubMed ID: 30469121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SERS spectroscopy using Au-Ag nanoshuttles and hydrophobic paper-based Au nanoflower substrate for simultaneous detection of dual cervical cancer-associated serum biomarkers.
    Lu D; Ran M; Liu Y; Xia J; Bi L; Cao X
    Anal Bioanal Chem; 2020 Oct; 412(26):7099-7112. PubMed ID: 32737551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets.
    Liu Y; Wu P
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5832-44. PubMed ID: 23734937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A controlled and reproducible pathway to dye-tagged, encapsulated silver nanoparticles as substrates for SERS multiplexing.
    Brown LO; Doorn SK
    Langmuir; 2008 Mar; 24(6):2277-80. PubMed ID: 18278969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Au@Ag core-shell nanostructures with a poly(3,4-dihydroxy-L-phenylalanine) interlayer for surface-enhanced Raman scattering imaging of epithelial cells.
    Wen H; Jiang P; Hu Y; Li G
    Mikrochim Acta; 2018 Jul; 185(7):353. PubMed ID: 29971629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.