BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 25801974)

  • 1. Structure and function of a Clostridium difficile sortase enzyme.
    Chambers CJ; Roberts AK; Shone CC; Acharya KR
    Sci Rep; 2015 Mar; 5():9449. PubMed ID: 25801974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional analysis of
    Kang CY; Huang IH; Chou CC; Wu TY; Chang JC; Hsiao YY; Cheng CH; Tsai WJ; Hsu KC; Wang S
    J Biol Chem; 2020 Mar; 295(11):3734-3745. PubMed ID: 32005667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Insights into Substrate Recognition by
    Yin JC; Fei CH; Lo YC; Hsiao YY; Chang JC; Nix JC; Chang YY; Yang LW; Huang IH; Wang S
    Front Cell Infect Microbiol; 2016; 6():160. PubMed ID: 27921010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disparate subcellular location of putative sortase substrates in Clostridium difficile.
    Peltier J; Shaw HA; Wren BW; Fairweather NF
    Sci Rep; 2017 Aug; 7(1):9204. PubMed ID: 28835650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence variation in the β7-β8 loop of bacterial class A sortase enzymes alters substrate selectivity.
    Piper IM; Struyvenberg SA; Valgardson JD; Johnson DA; Gao M; Johnston K; Svendsen JE; Kodama HM; Hvorecny KL; Antos JM; Amacher JF
    J Biol Chem; 2021 Aug; 297(2):100981. PubMed ID: 34302812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic diGMP regulates production of sortase substrates of Clostridium difficile and their surface exposure through ZmpI protease-mediated cleavage.
    Peltier J; Shaw HA; Couchman EC; Dawson LF; Yu L; Choudhary JS; Kaever V; Wren BW; Fairweather NF
    J Biol Chem; 2015 Oct; 290(40):24453-69. PubMed ID: 26283789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sortase Transpeptidases: Structural Biology and Catalytic Mechanism.
    Jacobitz AW; Kattke MD; Wereszczynski J; Clubb RT
    Adv Protein Chem Struct Biol; 2017; 109():223-264. PubMed ID: 28683919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering the substrate specificity of Staphylococcus aureus Sortase A. The beta6/beta7 loop from SrtB confers NPQTN recognition to SrtA.
    Bentley ML; Gaweska H; Kielec JM; McCafferty DG
    J Biol Chem; 2007 Mar; 282(9):6571-81. PubMed ID: 17200112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and computational studies of the Staphylococcus aureus sortase B-substrate complex reveal a substrate-stabilized oxyanion hole.
    Jacobitz AW; Wereszczynski J; Yi SW; Amer BR; Huang GL; Nguyen AV; Sawaya MR; Jung ME; McCammon JA; Clubb RT
    J Biol Chem; 2014 Mar; 289(13):8891-902. PubMed ID: 24519933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clostridium difficile has a single sortase, SrtB, that can be inhibited by small-molecule inhibitors.
    Donahue EH; Dawson LF; Valiente E; Firth-Clark S; Major MR; Littler E; Perrior TR; Wren BW
    BMC Microbiol; 2014 Aug; 14():219. PubMed ID: 25183427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural differences between the Streptococcus agalactiae housekeeping and pilus-specific sortases: SrtA and SrtC1.
    Khare B; Krishnan V; Rajashankar KR; I-Hsiu H; Xin M; Ton-That H; Narayana SV
    PLoS One; 2011; 6(8):e22995. PubMed ID: 21912586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray structure of Clostridium perfringens sortase B cysteine transpeptidase.
    Tamai E; Sekiya H; Maki J; Nariya H; Yoshida H; Kamitori S
    Biochem Biophys Res Commun; 2017 Nov; 493(3):1267-1272. PubMed ID: 28962862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active site analysis of sortase A from Staphylococcus simulans indicates function in cleavage of putative cell wall proteins.
    Chen J; Dong H; Murfin KE; Feng C; Wu S; Zheng B
    Biochem Biophys Res Commun; 2016 Sep; 478(4):1653-9. PubMed ID: 27591898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clostridium difficile sortase recognizes a (S/P)PXTG sequence motif and can accommodate diaminopimelic acid as a substrate for transpeptidation.
    van Leeuwen HC; Klychnikov OI; Menks MA; Kuijper EJ; Drijfhout JW; Hensbergen PJ
    FEBS Lett; 2014 Nov; 588(23):4325-33. PubMed ID: 25305382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and specificity of a new class of Ca
    Das S; Pawale VS; Dadireddy V; Singh AK; Ramakumar S; Roy RP
    J Biol Chem; 2017 Apr; 292(17):7244-7257. PubMed ID: 28270507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray structures of Clostridium perfringens sortase C with C-terminal cell wall sorting motif of LPST demonstrate role of subsite for substrate-binding and structural variations of catalytic site.
    Tamai E; Sekiya H; Nariya H; Katayama S; Kamitori S
    Biochem Biophys Res Commun; 2021 May; 554():138-144. PubMed ID: 33794418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structures of Staphylococcus aureus sortase A and its substrate complex.
    Zong Y; Bice TW; Ton-That H; Schneewind O; Narayana SV
    J Biol Chem; 2004 Jul; 279(30):31383-9. PubMed ID: 15117963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Making and breaking peptide bonds: protein engineering using sortase.
    Popp MW; Ploegh HL
    Angew Chem Int Ed Engl; 2011 May; 50(22):5024-32. PubMed ID: 21538739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering the specificity of Streptococcus pyogenes sortase A by loop grafting.
    Wójcik M; Szala K; van Merkerk R; Quax WJ; Boersma YL
    Proteins; 2020 Nov; 88(11):1394-1400. PubMed ID: 32501594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sortase mutants with improved protein thermostability and enzymatic activity obtained by consensus design.
    Wójcik M; Vázquez Torres S; Quax WJ; Boersma YL
    Protein Eng Des Sel; 2019 Dec; 32(12):555-564. PubMed ID: 32725168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.