These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 25802061)

  • 41. General Bioluminescence Resonance Energy Transfer Homogeneous Immunoassay for Small Molecules Based on Quantum Dots.
    Yu X; Wen K; Wang Z; Zhang X; Li C; Zhang S; Shen J
    Anal Chem; 2016 Apr; 88(7):3512-20. PubMed ID: 26948147
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reporter-Based BRET Sensors for Measuring Biological Functions In Vivo.
    Rathod M; Mal A; De A
    Methods Mol Biol; 2018; 1790():51-74. PubMed ID: 29858783
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of a bioluminescence resonance energy-transfer assay for estrogen-like compound in vivo monitoring.
    Michelini E; Mirasoli M; Karp M; Virta M; Roda A
    Anal Chem; 2004 Dec; 76(23):7069-76. PubMed ID: 15571361
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomass-derived carbon quantum dot sensitizers for solid-state nanostructured solar cells.
    Briscoe J; Marinovic A; Sevilla M; Dunn S; Titirici M
    Angew Chem Int Ed Engl; 2015 Apr; 54(15):4463-8. PubMed ID: 25704873
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lasing dynamics in single ZnO nanorods.
    Fallert J; Stelzl F; Zhou H; Reiser A; Thonke K; Sauer R; Klingshirn C; Kalt H
    Opt Express; 2008 Jan; 16(2):1125-31. PubMed ID: 18542186
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ultrasensitive detection of cellular protein interactions using bioluminescence resonance energy transfer quantum dot-based nanoprobes.
    Quiñones GA; Miller SC; Bhattacharyya S; Sobek D; Stephan JP
    J Cell Biochem; 2012 Jul; 113(7):2397-405. PubMed ID: 22573556
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Significant enhancement of yellow-green light emission of ZnO nanorod arrays using Ag island films.
    Lin CA; Tsai DS; Chen CY; He JH
    Nanoscale; 2011 Mar; 3(3):1195-9. PubMed ID: 21258696
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer.
    James JR; Oliveira MI; Carmo AM; Iaboni A; Davis SJ
    Nat Methods; 2006 Dec; 3(12):1001-6. PubMed ID: 17086179
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of in vitro SUMOylation using bioluminescence resonance energy transfer (BRET).
    Kim YP; Jin Z; Kim E; Park S; Oh YH; Kim HS
    Biochem Biophys Res Commun; 2009 May; 382(3):530-4. PubMed ID: 19289109
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photoelectrochemical study on photosynthetic pigments-sensitized nanocrystalline ZnO films.
    Petrella A; Cozzoli PD; Curri ML; Striccoli M; Cosma P; Agostiano A
    Bioelectrochemistry; 2004 Jun; 63(1-2):99-102. PubMed ID: 15110256
    [TBL] [Abstract][Full Text] [Related]  

  • 51. ZnO nanorod arrays for various low-bandgap polymers in inverted organic solar cells.
    Ho PY; Thiyagu S; Kao SH; Kao CY; Lin CF
    Nanoscale; 2014 Jan; 6(1):466-71. PubMed ID: 24217222
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation of ZnO particle with novel nut-like morphology by ultrasonic pretreatment and its luminescence property.
    Zheng Y; Yu X; Xu X; Jin D; Yue L
    Ultrason Sonochem; 2010 Jan; 17(1):7-10. PubMed ID: 19577946
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Engineering BRET-Sensor Proteins.
    Arts R; Aper SJ; Merkx M
    Methods Enzymol; 2017; 589():87-114. PubMed ID: 28336075
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydrothermal synthesis of ZnO nanorods: a statistical determination of the significant parameters in view of reducing the diameter.
    Elen K; Van den Rul H; Hardy A; Van Bael MK; D'Haen J; Peeters R; Franco D; Mullens J
    Nanotechnology; 2009 Feb; 20(5):055608. PubMed ID: 19417355
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication and evaluation of ZnO nanorods by liquid-phase deposition.
    Ichikawa T; Shiratori S
    Inorg Chem; 2011 Feb; 50(3):999-1004. PubMed ID: 21192712
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An improved bioluminescence resonance energy transfer strategy for imaging intracellular events in single cells and living subjects.
    De A; Loening AM; Gambhir SS
    Cancer Res; 2007 Aug; 67(15):7175-83. PubMed ID: 17671185
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Defect stabilization in ZnO nanorods by Mg2+ doping.
    Jayakumar OD; Sudarsan V; Shashikala K; Sudakar C; Naik R; Vatsa RK; Tyagi AK
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3273-7. PubMed ID: 21776696
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Zinc Oxide Nanorods Shielded with an Ultrathin Nickel Layer: Tailoring of Physical Properties.
    Mudusu D; Nandanapalli KR; Dugasani SR; Park SH; Tu CW
    Sci Rep; 2016 Jun; 6():28561. PubMed ID: 27334555
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stable field emission performance from urchin-like ZnO nanostructures.
    Jiang H; Hu J; Gu F; Li C
    Nanotechnology; 2009 Feb; 20(5):055706. PubMed ID: 19417365
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Competition between Förster resonance energy transfer and electron transfer in stoichiometrically assembled semiconductor quantum dot-fullerene conjugates.
    Stewart MH; Huston AL; Scott AM; Oh E; Algar WR; Deschamps JR; Susumu K; Jain V; Prasuhn DE; Blanco-Canosa J; Dawson PE; Medintz IL
    ACS Nano; 2013 Oct; 7(10):9489-505. PubMed ID: 24128175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.