These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 25802228)

  • 41. Effect of heel lifts on plantarflexor and dorsiflexor activity during gait.
    Johanson MA; Allen JC; Matsumoto M; Ueda Y; Wilcher KM
    Foot Ankle Int; 2010 Nov; 31(11):1014-20. PubMed ID: 21189196
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Error signals driving locomotor adaptation: cutaneous feedback from the foot is used to adapt movement during perturbed walking.
    Choi JT; Jensen P; Nielsen JB; Bouyer LJ
    J Physiol; 2016 Oct; 594(19):5673-84. PubMed ID: 27218896
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of foot orthoses on the temporal pattern of muscular activity during walking.
    Dedieu P; Drigeard C; Gjini L; Dal Maso F; Zanone PG
    Clin Biomech (Bristol); 2013 Aug; 28(7):820-4. PubMed ID: 23871304
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Orthotic Heel Wedges Do Not Alter Hindfoot Kinematics and Achilles Tendon Force During Level and Inclined Walking in Healthy Individuals.
    Weinert-Aplin RA; Bull AM; McGregor AH
    J Appl Biomech; 2016 Apr; 32(2):160-70. PubMed ID: 26502456
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural and functional predictors of regional peak pressures under the foot during walking.
    Morag E; Cavanagh PR
    J Biomech; 1999 Apr; 32(4):359-70. PubMed ID: 10213026
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Patellar tendon bearing brace: combined effect of heel clearance and ankle status on foot plantar pressure.
    Alimerzaloo F; Kashani RV; Saeedi H; Farzi M; Fallahian N
    Prosthet Orthot Int; 2014 Feb; 38(1):34-8. PubMed ID: 23690286
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neuromuscular control in individuals with chronic ankle instability: A comparison of unexpected and expected ankle inversion perturbations during a single leg drop-landing.
    Simpson JD; Stewart EM; Turner AJ; Macias DM; Wilson SJ; Chander H; Knight AC
    Hum Mov Sci; 2019 Apr; 64():133-141. PubMed ID: 30721787
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking.
    Malcolm P; Derave W; Galle S; De Clercq D
    PLoS One; 2013; 8(2):e56137. PubMed ID: 23418524
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ankle torque control that shifts the center of pressure from heel to toe contributes non-zero sagittal plane angular momentum during human walking.
    Gruben KG; Boehm WL
    J Biomech; 2014 Apr; 47(6):1389-94. PubMed ID: 24524989
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Backward walking at three levels of treadmill inclination: an electromyographic and kinematic analysis.
    Cipriani DJ; Armstrong CW; Gaul S
    J Orthop Sports Phys Ther; 1995 Sep; 22(3):95-102. PubMed ID: 8535470
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prediction of calcaneal bone competence from biomechanical accommodation variables measured during weighted walking.
    James CR; Atkins LT; Yang HS; Dufek JS; Bates BT
    Hum Mov Sci; 2017 Dec; 56(Pt B):37-45. PubMed ID: 29096182
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of lace-up ankle braces on electromyography measures during walking in adults with chronic ankle instability.
    Barlow G; Donovan L; Hart JM; Hertel J
    Phys Ther Sport; 2015 Feb; 16(1):16-21. PubMed ID: 24810252
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biomechanics of slow running and walking with a rocker shoe.
    Sobhani S; Hijmans J; van den Heuvel E; Zwerver J; Dekker R; Postema K
    Gait Posture; 2013 Sep; 38(4):998-1004. PubMed ID: 23770233
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of ankle-hindfoot stability in multiple planes: an in vitro study.
    Fujii T; Kitaoka HB; Luo ZP; Kura H; An KN
    Foot Ankle Int; 2005 Aug; 26(8):633-7. PubMed ID: 16115421
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking.
    Malcolm P; Quesada RE; Caputo JM; Collins SH
    J Neuroeng Rehabil; 2015 Feb; 12():21. PubMed ID: 25889201
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The ankle dorsiflexion kinetics demand to increase swing phase foot-ground clearance: implications for assistive device design and energy demands.
    Bajelan S; Sparrow WAT; Begg R
    J Neuroeng Rehabil; 2024 Jun; 21(1):105. PubMed ID: 38907255
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surface electromyography and plantar pressure changes with novel gait training device in participants with chronic ankle instability.
    Feger MA; Hertel J
    Clin Biomech (Bristol); 2016 Aug; 37():117-124. PubMed ID: 27423026
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Locomotor adaptation to a powered ankle-foot orthosis depends on control method.
    Cain SM; Gordon KE; Ferris DP
    J Neuroeng Rehabil; 2007 Dec; 4():48. PubMed ID: 18154649
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The influence of insoles with a peroneal pressure point on the electromyographic activity of tibialis anterior and peroneus longus during gait.
    Ludwig O; Kelm J; Fröhlich M
    J Foot Ankle Res; 2016; 9(1):33. PubMed ID: 27555883
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Voluntary toe-walking gait initiation: electromyographical and biomechanical aspects.
    Couillandre A; Maton B; Brenière Y
    Exp Brain Res; 2002 Dec; 147(3):313-21. PubMed ID: 12428139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.