BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 25802330)

  • 1. An unprecedented NADPH domain conformation in lysine monooxygenase NbtG provides insights into uncoupling of oxygen consumption from substrate hydroxylation.
    Binda C; Robinson RM; Martin Del Campo JS; Keul ND; Rodriguez PJ; Robinson HH; Mattevi A; Sobrado P
    J Biol Chem; 2015 May; 290(20):12676-88. PubMed ID: 25802330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of structural determinants of NAD(P)H selectivity and lysine binding in lysine N(6)-monooxygenase.
    Abdelwahab H; Robinson R; Rodriguez P; Adly C; El-Sohaimy S; Sobrado P
    Arch Biochem Biophys; 2016 Sep; 606():180-8. PubMed ID: 27503802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Structure of the Antibiotic Deactivating, N-hydroxylating Rifampicin Monooxygenase.
    Liu LK; Abdelwahab H; Martin Del Campo JS; Mehra-Chaudhary R; Sobrado P; Tanner JJ
    J Biol Chem; 2016 Oct; 291(41):21553-21562. PubMed ID: 27557658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical characterization of a flavin adenine dinucleotide-dependent monooxygenase, ornithine hydroxylase from Pseudomonas aeruginosa, suggests a novel reaction mechanism.
    Meneely KM; Lamb AL
    Biochemistry; 2007 Oct; 46(42):11930-7. PubMed ID: 17900176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural analyses of the Group A flavin-dependent monooxygenase PieE reveal a sliding FAD cofactor conformation bridging OUT and IN conformations.
    Manenda MS; Picard MÈ; Zhang L; Cyr N; Zhu X; Barma J; Pascal JM; Couture M; Zhang C; Shi R
    J Biol Chem; 2020 Apr; 295(14):4709-4722. PubMed ID: 32111738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arg279 is the key regulator of coenzyme selectivity in the flavin-dependent ornithine monooxygenase SidA.
    Robinson R; Franceschini S; Fedkenheuer M; Rodriguez PJ; Ellerbrock J; Romero E; Echandi MP; Martin Del Campo JS; Sobrado P
    Biochim Biophys Acta; 2014 Apr; 1844(4):778-84. PubMed ID: 24534646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a broadly specific cadaverine N-hydroxylase involved in desferrioxamine B biosynthesis in Streptomyces sviceus.
    Giddings LA; Lountos GT; Kim KW; Brockley M; Needle D; Cherry S; Tropea JE; Waugh DS
    PLoS One; 2021; 16(3):e0248385. PubMed ID: 33784308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trapping conformational states of a flavin-dependent
    Campbell AC; Stiers KM; Martin Del Campo JS; Mehra-Chaudhary R; Sobrado P; Tanner JJ
    J Biol Chem; 2020 Sep; 295(38):13239-13249. PubMed ID: 32723870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two structures of an N-hydroxylating flavoprotein monooxygenase: ornithine hydroxylase from Pseudomonas aeruginosa.
    Olucha J; Meneely KM; Chilton AS; Lamb AL
    J Biol Chem; 2011 Sep; 286(36):31789-98. PubMed ID: 21757711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterologous expression, purification, and characterization of an l-ornithine N(5)-hydroxylase involved in pyoverdine siderophore biosynthesis in Pseudomonas aeruginosa.
    Ge L; Seah SY
    J Bacteriol; 2006 Oct; 188(20):7205-10. PubMed ID: 17015659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic and structural studies of the N-hydroxylating flavoprotein monooxygenases.
    Olucha J; Lamb AL
    Bioorg Chem; 2011 Dec; 39(5-6):171-7. PubMed ID: 21871647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aspergillus fumigatus SidA is a highly specific ornithine hydroxylase with bound flavin cofactor.
    Chocklett SW; Sobrado P
    Biochemistry; 2010 Aug; 49(31):6777-83. PubMed ID: 20614882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of Rifampicin Inactivation in Nocardia farcinica.
    Abdelwahab H; Martin Del Campo JS; Dai Y; Adly C; El-Sohaimy S; Sobrado P
    PLoS One; 2016; 11(10):e0162578. PubMed ID: 27706151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual role of NADP(H) in the reaction of a flavin dependent N-hydroxylating monooxygenase.
    Romero E; Fedkenheuer M; Chocklett SW; Qi J; Oppenheimer M; Sobrado P
    Biochim Biophys Acta; 2012 Jun; 1824(6):850-7. PubMed ID: 22465572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and function of a flavin-dependent S-monooxygenase from garlic (
    Valentino H; Campbell AC; Schuermann JP; Sultana N; Nam HG; LeBlanc S; Tanner JJ; Sobrado P
    J Biol Chem; 2020 Aug; 295(32):11042-11055. PubMed ID: 32527723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Ser-257 in the sliding mechanism of NADP(H) in the reaction catalyzed by the Aspergillus fumigatus flavin-dependent ornithine N5-monooxygenase SidA.
    Shirey C; Badieyan S; Sobrado P
    J Biol Chem; 2013 Nov; 288(45):32440-32448. PubMed ID: 24072704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C4a-hydroperoxyflavin formation in N-hydroxylating flavin monooxygenases is mediated by the 2'-OH of the nicotinamide ribose of NADP⁺.
    Robinson R; Badieyan S; Sobrado P
    Biochemistry; 2013 Dec; 52(51):9089-91. PubMed ID: 24321106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic studies on the flavin-dependent N⁶-lysine monooxygenase MbsG reveal an unusual control for catalysis.
    Robinson RM; Rodriguez PJ; Sobrado P
    Arch Biochem Biophys; 2014 May; 550-551():58-66. PubMed ID: 24769337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate binding modulates the activity of Mycobacterium smegmatis G, a flavin-dependent monooxygenase involved in the biosynthesis of hydroxamate-containing siderophores.
    Robinson R; Sobrado P
    Biochemistry; 2011 Oct; 50(39):8489-96. PubMed ID: 21870809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flavin oxidation in flavin-dependent N-monooxygenases.
    Robinson RM; Klancher CA; Rodriguez PJ; Sobrado P
    Protein Sci; 2019 Jan; 28(1):90-99. PubMed ID: 30098072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.