These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 25802839)

  • 1. Prediction of antimicrobial peptides based on sequence alignment and support vector machine-pairwise algorithm utilizing LZ-complexity.
    Ng XY; Rosdi BA; Shahrudin S
    Biomed Res Int; 2015; 2015():212715. PubMed ID: 25802839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of antimicrobial peptides based on sequence alignment and feature selection methods.
    Wang P; Hu L; Liu G; Jiang N; Chen X; Xu J; Zheng W; Li L; Tan M; Chen Z; Song H; Cai YD; Chou KC
    PLoS One; 2011 Apr; 6(4):e18476. PubMed ID: 21533231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ClassAMP: a prediction tool for classification of antimicrobial peptides.
    Joseph S; Karnik S; Nilawe P; Jayaraman VK; Idicula-Thomas S
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1535-8. PubMed ID: 22732690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel fractal approach for predicting G-protein-coupled receptors and their subfamilies with support vector machines.
    Nie G; Li Y; Wang F; Wang S; Hu X
    Biomed Mater Eng; 2015; 26 Suppl 1():S1829-36. PubMed ID: 26405954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An SVM-based system for predicting protein subnuclear localizations.
    Lei Z; Dai Y
    BMC Bioinformatics; 2005 Dec; 6():291. PubMed ID: 16336650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping membrane activity in undiscovered peptide sequence space using machine learning.
    Lee EY; Fulan BM; Wong GC; Ferguson AL
    Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13588-13593. PubMed ID: 27849600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knowledge-based computational methods for identifying or designing novel, non-homologous antimicrobial peptides.
    Juretić D; Vukičević D; Petrov D; Novković M; Bojović V; Lučić B; Ilić N; Tossi A
    Eur Biophys J; 2011 Apr; 40(4):371-85. PubMed ID: 21274708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CAMP: a useful resource for research on antimicrobial peptides.
    Thomas S; Karnik S; Barai RS; Jayaraman VK; Idicula-Thomas S
    Nucleic Acids Res; 2010 Jan; 38(Database issue):D774-80. PubMed ID: 19923233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning improves antimicrobial peptide recognition.
    Veltri D; Kamath U; Shehu A
    Bioinformatics; 2018 Aug; 34(16):2740-2747. PubMed ID: 29590297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico Protein-Protein Interaction prediction with sequence alignment and classifier stacking.
    Marini S; Xu Q; Yang Q
    Curr Protein Pept Sci; 2011 Nov; 12(7):614-20. PubMed ID: 21827427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides.
    Gull S; Shamim N; Minhas F
    Comput Biol Med; 2019 Apr; 107():172-181. PubMed ID: 30831306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search.
    Garg A; Raghava GP
    In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of protein subcellular localization.
    Yu CS; Chen YC; Lu CH; Hwang JK
    Proteins; 2006 Aug; 64(3):643-51. PubMed ID: 16752418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides.
    Waghu FH; Barai RS; Gurung P; Idicula-Thomas S
    Nucleic Acids Res; 2016 Jan; 44(D1):D1094-7. PubMed ID: 26467475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning in the rational design of antimicrobial peptides.
    Rondón-Villarreal P; Sierra DA; Torres R
    Curr Comput Aided Drug Des; 2014; 10(3):183-90. PubMed ID: 25756666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in silico comparative evaluation of anti-Acinetobacter baumannii peptides.
    Sharma A; Rishi P; Gautam A; Gautam V; Tewari R
    J Microbiol Biotechnol; 2015 Oct; ():. PubMed ID: 26428729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SVM based method for predicting HLA-DRB1*0401 binding peptides in an antigen sequence.
    Bhasin M; Raghava GP
    Bioinformatics; 2004 Feb; 20(3):421-3. PubMed ID: 14960470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition.
    Hayat M; Khan A
    J Theor Biol; 2011 Feb; 271(1):10-7. PubMed ID: 21110985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting protein-binding RNA nucleotides with consideration of binding partners.
    Tuvshinjargal N; Lee W; Park B; Han K
    Comput Methods Programs Biomed; 2015 Jun; 120(1):3-15. PubMed ID: 25907142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OXBench: a benchmark for evaluation of protein multiple sequence alignment accuracy.
    Raghava GP; Searle SM; Audley PC; Barber JD; Barton GJ
    BMC Bioinformatics; 2003 Oct; 4():47. PubMed ID: 14552658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.