These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 25802856)

  • 1. Age-related impairment of quality of joint motion in vibroarthrographic signal analysis.
    Bączkowicz D; Majorczyk E; Kręcisz K
    Biomed Res Int; 2015; 2015():591707. PubMed ID: 25802856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Nonlinear Vibroartrographic Parameters for Age-Related Changes Assessment in Knee Arthrokinematics.
    Kręcisz K; Bączkowicz D; Kawala-Sterniuk A
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis and multiclass classification of pathological knee joints using vibroarthrographic signals.
    Kręcisz K; Bączkowicz D
    Comput Methods Programs Biomed; 2018 Feb; 154():37-44. PubMed ID: 29249345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of vibroarthrographic signals with features related to signal variability and radial-basis functions.
    Rangayyan RM; Wu Y
    Ann Biomed Eng; 2009 Jan; 37(1):156-63. PubMed ID: 19015987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibroarthrography in the evaluation of musculoskeletal system - a pilot study.
    Bączkowicz D; Kręcisz K
    Ortop Traumatol Rehabil; 2013 Oct; 15(5):407-16. PubMed ID: 24431252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of patellofemoral arthrokinematic motion quality in open and closed kinetic chains using vibroarthrography.
    Bączkowicz D; Kręcisz K; Borysiuk Z
    BMC Musculoskelet Disord; 2019 Jan; 20(1):48. PubMed ID: 30704430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive cancellation of muscle contraction interference in vibroarthrographic signals.
    Zhang YT; Rangayyan RM; Frank CB; Bell GD
    IEEE Trans Biomed Eng; 1994 Feb; 41(2):181-91. PubMed ID: 8026851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parametric representation and screening of knee joint vibroarthrographic signals.
    Rangayyan RM; Krishnan S; Bell GD; Frank CB; Ladly KO
    IEEE Trans Biomed Eng; 1997 Nov; 44(11):1068-74. PubMed ID: 9353986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-aided diagnosis of knee-joint disorders via vibroarthrographic signal analysis: a review.
    Wu Y; Krishnan S; Rangayyan RM
    Crit Rev Biomed Eng; 2010; 38(2):201-24. PubMed ID: 20932239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of artifacts in knee joint vibroarthrographic signals using ensemble empirical mode decomposition and detrended fluctuation analysis.
    Wu Y; Yang S; Zheng F; Cai S; Lu M; Wu M
    Physiol Meas; 2014 Mar; 35(3):429-39. PubMed ID: 24521557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive time-frequency analysis of knee joint vibroarthrographic signals for noninvasive screening of articular cartilage pathology.
    Krishnan S; Rangayyan RM; Bell GD; Frank CB
    IEEE Trans Biomed Eng; 2000 Jun; 47(6):773-83. PubMed ID: 10833852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knee joint vibroarthrography of asymptomatic subjects during loaded flexion-extension movements.
    Andersen RE; Arendt-Nielsen L; Madeleine P
    Med Biol Eng Comput; 2018 Dec; 56(12):2301-2312. PubMed ID: 29926251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening of knee-joint vibroarthrographic signals using statistical parameters and radial basis functions.
    Rangayyan RM; Wu YF
    Med Biol Eng Comput; 2008 Mar; 46(3):223-32. PubMed ID: 17960443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and classification of knee-joint vibroarthrographic signals using probability density functions estimated with Parzen windows.
    Rangayyan RM; Wu Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2099-102. PubMed ID: 19163110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring deterioration of knee osteoarthritis using vibration arthrography in daily activities.
    Ye Y; Wan Z; Liu B; Xu H; Wang Q; Ding T
    Comput Methods Programs Biomed; 2022 Jan; 213():106519. PubMed ID: 34826659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibration arthrometry in the patients with failed total knee replacement.
    Jiang CC; Lee JH; Yuan TT
    IEEE Trans Biomed Eng; 2000 Feb; 47(2):219-27. PubMed ID: 10721629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint motion quality in vibroacoustic signal analysis for patients with patellofemoral joint disorders.
    Bączkowicz D; Majorczyk E
    BMC Musculoskelet Disord; 2014 Dec; 15():426. PubMed ID: 25496721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Representation of fluctuation features in pathological knee joint vibroarthrographic signals using kernel density modeling method.
    Yang S; Cai S; Zheng F; Wu Y; Liu K; Wu M; Zou Q; Chen J
    Med Eng Phys; 2014 Oct; 36(10):1305-11. PubMed ID: 25096412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strict 2-Surface Proximal Classification of Knee-joint Vibroarthrographic Signals.
    Mu T; Nandi AK; Rangayyan RM
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4911-4. PubMed ID: 18003107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive filtering, modelling and classification of knee joint vibroarthrographic signals for non-invasive diagnosis of articular cartilage pathology.
    Krishnan S; Rangayyan RM; Bell GD; Frank CB; Ladly KO
    Med Biol Eng Comput; 1997 Nov; 35(6):677-84. PubMed ID: 9538545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.