These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 25802865)

  • 1. Characterization of bone marrow mononuclear cells on biomaterials for bone tissue engineering in vitro.
    Henrich D; Verboket R; Schaible A; Kontradowitz K; Oppermann E; Brune JC; Nau C; Meier S; Bonig H; Marzi I; Seebach C
    Biomed Res Int; 2015; 2015():762407. PubMed ID: 25802865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, beta-tricalcium phosphate and demineralized bone matrix.
    Kasten P; Luginbühl R; van Griensven M; Barkhausen T; Krettek C; Bohner M; Bosch U
    Biomaterials; 2003 Jul; 24(15):2593-603. PubMed ID: 12726713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of three different types of scaffolds preseeded with human bone marrow mononuclear cells on the bone healing in a femoral critical size defect model of the athymic rat.
    Janko M; Sahm J; Schaible A; Brune JC; Bellen M; Schroder K; Seebach C; Marzi I; Henrich D
    J Tissue Eng Regen Med; 2018 Mar; 12(3):653-666. PubMed ID: 28548246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of bioactive porous α-TCP/HAp beads for bone tissue engineering.
    Asaoka T; Ohtake S; Furukawa KS; Tamura A; Ushida T
    J Biomed Mater Res A; 2013 Nov; 101(11):3295-300. PubMed ID: 23983180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering.
    Mauney JR; Jaquiéry C; Volloch V; Heberer M; Martin I; Kaplan DL
    Biomaterials; 2005 Jun; 26(16):3173-85. PubMed ID: 15603812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.
    Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I
    Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering: an in vitro and in vivo study.
    Liu G; Sun J; Li Y; Zhou H; Cui L; Liu W; Cao Y
    Calcif Tissue Int; 2008 Sep; 83(3):176-85. PubMed ID: 18704250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A composite demineralized bone matrix--self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow.
    Hou T; Li Z; Luo F; Xie Z; Wu X; Xing J; Dong S; Xu J
    Biomaterials; 2014 Jul; 35(22):5689-99. PubMed ID: 24755526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous cultivation of human endothelial-like differentiated precursor cells and human marrow stromal cells on beta-tricalcium phosphate.
    Henrich D; Seebach C; Kaehling C; Scherzed A; Wilhelm K; Tewksbury R; Powerski M; Marzi I
    Tissue Eng Part C Methods; 2009 Dec; 15(4):551-60. PubMed ID: 19199563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication.
    Lee DH; Tripathy N; Shin JH; Song JE; Cha JG; Min KD; Park CH; Khang G
    Int J Biol Macromol; 2017 Feb; 95():14-23. PubMed ID: 27818295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-based therapy by implanted human bone marrow-derived mononuclear cells improved bone healing of large bone defects in rats.
    Seebach C; Henrich D; Schaible A; Relja B; Jugold M; Bönig H; Marzi I
    Tissue Eng Part A; 2015 May; 21(9-10):1565-78. PubMed ID: 25693739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering.
    Khojasteh A; Fahimipour F; Eslaminejad MB; Jafarian M; Jahangir S; Bastami F; Tahriri M; Karkhaneh A; Tayebi L
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():780-8. PubMed ID: 27612772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extensive H(+) release by bone substitutes affects biocompatibility in vitro testing.
    Jäger M; Fischer J; Schultheis A; Lensing-Höhn S; Krauspe R
    J Biomed Mater Res A; 2006 Feb; 76(2):310-22. PubMed ID: 16270341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface biofunctionalization of β-TCP blocks using aptamer 74 for bone tissue engineering.
    Ardjomandi N; Huth J; Stamov DR; Henrich A; Klein C; Wendel HP; Reinert S; Alexander D
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():267-275. PubMed ID: 27287122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone formation in a rat calvarial defect model after transplanting autogenous bone marrow with beta-tricalcium phosphate.
    Shirasu N; Ueno T; Hirata Y; Hirata A; Kagawa T; Kanou M; Sawaki M; Wakimoto M; Ota A; Imura H; Matsumura T; Yamada T; Yamachika E; Sano K
    Acta Histochem; 2010 May; 112(3):270-7. PubMed ID: 19403161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.
    Ye X; Yin X; Yang D; Tan J; Liu G
    Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro biological evaluation of beta-TCP/HDPE--A novel orthopedic composite: a survey using human osteoblast and fibroblast bone cells.
    Homaeigohar SSh; Shokrgozar MA; Khavandi A; Sadi AY
    J Biomed Mater Res A; 2008 Feb; 84(2):491-9. PubMed ID: 17618499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of calcium phosphate-zirconia scaffold and human endometrial adult stem cells for bone tissue engineering.
    Alizadeh A; Moztarzadeh F; Ostad SN; Azami M; Geramizadeh B; Hatam G; Bizari D; Tavangar SM; Vasei M; Ai J
    Artif Cells Nanomed Biotechnol; 2016; 44(1):66-73. PubMed ID: 24810360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The osteo-inductive activity of bone-marrow-derived mononuclear cells resides within the CD14+ population and is independent of the CD34+ population.
    Henrich D; Seebach C; Verboket R; Schaible A; Marzi I; Bonig H
    Eur Cell Mater; 2018 Mar; 35():165-177. PubMed ID: 29509226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mussel-inspired bioceramics with self-assembled Ca-P/polydopamine composite nanolayer: preparation, formation mechanism, improved cellular bioactivity and osteogenic differentiation of bone marrow stromal cells.
    Wu C; Han P; Liu X; Xu M; Tian T; Chang J; Xiao Y
    Acta Biomater; 2014 Jan; 10(1):428-38. PubMed ID: 24157695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.