BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 25803044)

  • 1. Muscle histidine-containing dipeptides are elevated by glucose intolerance in both rodents and men.
    Stegen S; Everaert I; Deldicque L; Vallova S; de Courten B; Ukropcova B; Ukropec J; Derave W
    PLoS One; 2015; 10(3):e0121062. PubMed ID: 25803044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of skeletal muscle-fibre type in regulation of glucose metabolism in middle-aged subjects with impaired glucose tolerance during a long-term exercise and dietary intervention.
    Venojärvi M; Puhke R; Hämäläinen H; Marniemi J; Rastas M; Rusko H; Nuutila P; Hänninen O; Aunola S
    Diabetes Obes Metab; 2005 Nov; 7(6):745-54. PubMed ID: 16219019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of histidine-free and -excess diets on anserine and carnosine contents in rat gastrocnemius muscle.
    Tamaki N; Tsunemori F; Wakabayashi M; Hama T
    J Nutr Sci Vitaminol (Tokyo); 1977; 23(4):331-40. PubMed ID: 915562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endogenous skeletal muscle antioxidants.
    Chan KM; Decker EA
    Crit Rev Food Sci Nutr; 1994; 34(4):403-26. PubMed ID: 7945896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histidine dipeptides are key regulators of excitation-contraction coupling in cardiac muscle: Evidence from a novel CARNS1 knockout rat model.
    Gonçalves LS; Sales LP; Saito TR; Campos JC; Fernandes AL; Natali J; Jensen L; Arnold A; Ramalho L; Bechara LRG; Esteca MV; Correa I; Sant'Anna D; Ceroni A; Michelini LC; Gualano B; Teodoro W; Carvalho VH; Vargas BS; Medeiros MHG; Baptista IL; Irigoyen MC; Sale C; Ferreira JCB; Artioli GG
    Redox Biol; 2021 Aug; 44():102016. PubMed ID: 34038814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postprandial interleukin-6 release from skeletal muscle in men with impaired glucose tolerance can be reduced by weight loss.
    Corpeleijn E; Saris WH; Jansen EH; Roekaerts PM; Feskens EJ; Blaak EE
    J Clin Endocrinol Metab; 2005 Oct; 90(10):5819-24. PubMed ID: 16030153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative physiology investigations support a role for histidine-containing dipeptides in intracellular acid-base regulation of skeletal muscle.
    Dolan E; Saunders B; Harris RC; Bicudo JEPW; Bishop DJ; Sale C; Gualano B
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Aug; 234():77-86. PubMed ID: 31029715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carnosine and related dipeptides as quenchers of reactive carbonyl species: from structural studies to therapeutic perspectives.
    Aldini G; Facino RM; Beretta G; Carini M
    Biofactors; 2005; 24(1-4):77-87. PubMed ID: 16403966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β-Alanine as a factor influencing the content of bioactive dipeptides in muscles of Hubbard Flex chickens.
    Łukasiewicz M; Puppel K; Kuczyńska B; Kamaszewski M; Niemiec J
    J Sci Food Agric; 2015 Sep; 95(12):2562-5. PubMed ID: 25348487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The utilization of carnosine in rats fed on a histidine-free diet and its effect on the levels of tissue histidine and carnosine.
    Tamaki N; Funatsuka A; Fujimoto S; Hama T
    J Nutr Sci Vitaminol (Tokyo); 1984 Dec; 30(6):541-51. PubMed ID: 6533273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of dietary histidine deprivation in two rat strains on hemoglobin and tissue concentrations of histidine-containing dipeptides.
    Quinn MR; Fisher H
    J Nutr; 1977 Nov; 107(11):2044-54. PubMed ID: 908962
    [No Abstract]   [Full Text] [Related]  

  • 12. Differences in muscle histidine-containing dipeptides in broilers.
    Barbaresi S; Maertens L; Claeys E; Derave W; De Smet S
    J Sci Food Agric; 2019 Oct; 99(13):5680-5686. PubMed ID: 31150113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of alanine glyoxylate transaminase-2 (agxt2) in β-alanine and carnosine metabolism of healthy mice and humans.
    Stautemas J; Jarzebska N; Shan ZX; Blancquaert L; Everaert I; de Jager S; De Baere S; Hautekiet A; Volkaert A; Lefevere FBD; Martens-Lobenhoffer J; Bode-Böger SM; Kim CK; Leiper J; Weiss N; Croubels S; Rodionov RN; Derave W
    Eur J Appl Physiol; 2020 Dec; 120(12):2749-2759. PubMed ID: 32948897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of histidine dipeptides on postmortem acidification of broiler muscles with different energy metabolism.
    Baldi G; Soglia F; Laghi L; Meluzzi A; Petracci M
    Poult Sci; 2021 Feb; 100(2):1299-1307. PubMed ID: 33518087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paraoxonase1 (PON1) reduces insulin resistance in mice fed a high-fat diet, and promotes GLUT4 overexpression in myocytes, via the IRS-1/Akt pathway.
    Koren-Gluzer M; Aviram M; Hayek T
    Atherosclerosis; 2013 Jul; 229(1):71-8. PubMed ID: 23639858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The histidine-containing dipeptides, carnosine and anserine: distribution, properties and biological significance.
    Boldyrev AA; Severin SE
    Adv Enzyme Regul; 1990; 30():175-94. PubMed ID: 2206021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of dietary histidine on contents of carnosine and anserine in muscles of broilers.
    Kai S; Watanabe G; Kubota M; Kadowaki M; Fujimura S
    Anim Sci J; 2015 May; 86(5):541-6. PubMed ID: 25521014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of long- or medium-chain fat diets on glucose tolerance and myocellular content of lipid intermediates in rats.
    De Vogel-van den Bosch J; Hoeks J; Timmers S; Houten SM; van Dijk PJ; Boon W; Van Beurden D; Schaart G; Kersten S; Voshol PJ; Wanders RJ; Hesselink MK; Schrauwen P
    Obesity (Silver Spring); 2011 Apr; 19(4):792-9. PubMed ID: 20595951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extensive profiling of histidine-containing dipeptides reveals species- and tissue-specific distribution and metabolism in mice, rats, and humans.
    Van der Stede T; Spaas J; de Jager S; De Brandt J; Hansen C; Stautemas J; Vercammen B; De Baere S; Croubels S; Van Assche CH; Pastor BC; Vandenbosch M; Van Thienen R; Verboven K; Hansen D; Bové T; Lapauw B; Van Praet C; Decaestecker K; Vanaudenaerde B; Eijnde BO; Gliemann L; Hellsten Y; Derave W
    Acta Physiol (Oxf); 2023 Sep; 239(1):e14020. PubMed ID: 37485756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2-Oxo-histidine-containing dipeptides are functional oxidation products.
    Ihara H; Kakihana Y; Yamakage A; Kai K; Shibata T; Nishida M; Yamada KI; Uchida K
    J Biol Chem; 2019 Jan; 294(4):1279-1289. PubMed ID: 30504220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.