These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25803094)

  • 41. Effects of verapamil on the pharmacokinetics and hepatobiliary disposition of fexofenadine in pigs.
    Sjögren E; Hedeland M; Bondesson U; Lennernäs H
    Eur J Pharm Sci; 2014 Jun; 57():214-23. PubMed ID: 24075962
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A comparison between endogenous and exogenous lithium clearance in the anaesthetized rat.
    Leyssac PP; Christensen P
    Acta Physiol Scand; 1994 Jun; 151(2):173-9. PubMed ID: 7942052
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Altered hepatobiliary disposition of acetaminophen metabolites after phenobarbital pretreatment and renal ligation: evidence for impaired biliary excretion and a diffusional barrier.
    Brouwer KL; Jones JA
    J Pharmacol Exp Ther; 1990 Feb; 252(2):657-64. PubMed ID: 2313593
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Disposition of [14C]gamma-cyclodextrin in germ-free and conventional rats.
    De Bie AT; Van Ommen B; Bär A
    Regul Toxicol Pharmacol; 1998 Apr; 27(2):150-8. PubMed ID: 9671569
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Effect of lithium hydroxybutyrate on the circadian dynamics of the urinary excretion of Li(+), Na(+), K(+), and Ca(2+) in rats depending on the circadian phase of the drug administration].
    Zamoshchina TA; Meleshko MV; Ivanova EV
    Eksp Klin Farmakol; 2001; 64(4):21-6. PubMed ID: 11589102
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An underlying role for hepatobiliary dysfunction in cyclosporine A nephrotoxicity.
    Aleo MD; Doshna CM; Fritz CA
    Toxicol Appl Pharmacol; 2008 Jul; 230(1):126-34. PubMed ID: 18407308
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biliary Excretion-Mediated Food Effects and Prediction.
    Xiao J; Tran D; Zhang X; Zhang T; Seo S; Zhu H; Zou P
    AAPS J; 2020 Sep; 22(6):124. PubMed ID: 32980935
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biliary excretion of polystyrene microspheres with covalently linked FITC fluorescence after oral and parenteral administration to male Wistar rats.
    Jani PU; Nomura T; Yamashita F; Takakura Y; Florence AT; Hashida M
    J Drug Target; 1996; 4(2):87-93. PubMed ID: 8894968
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pharmacokinetics of nisoldipine. I. Absorption, concentration in plasma, and excretion after single administration of [14C]nisoldipine in rats, dogs, monkey, and swine.
    Ahr HJ; Krause HP; Siefert HM; Suwelack D; Weber H
    Arzneimittelforschung; 1988 Aug; 38(8):1093-8. PubMed ID: 3196402
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Disposition and metabolism of the new hypocholesterolemic compound S-8921 in rats and dogs.
    Yamaguchi T; Nakajima Y; Mizobuchi M; Inazawa K; Kanazu T; Kadono K; Ohkawa T; Iwatani K
    Arzneimittelforschung; 1998 Oct; 48(10):995-1006. PubMed ID: 9825117
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Blepharospasm and apraxia of eyelid opening in lithium intoxication.
    Micheli F; Cersósimo G; Scorticati MC; Ledesma D; Molinos J
    Clin Neuropharmacol; 1999; 22(3):176-9. PubMed ID: 10367183
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The disposition of radioactivity after administration of the anthelminthic methyl-14C-5-cyclopropylcarbonyl-2-benzimidazole carbamate (ciclobendazole) to rats and dogs.
    Brodie RR; Mayo BC; Chasseaud LF; Hawkins DR
    Arzneimittelforschung; 1977; 27(3):593-8. PubMed ID: 577426
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Disposition of 14C-alpha-cyclodextrin in germ-free and conventional rats.
    Van Ommen B; De Bie AT; Bär A
    Regul Toxicol Pharmacol; 2004 Jun; 39 Suppl 1():57-66. PubMed ID: 15265616
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Protective effects of acute lithium preconditioning against renal ischemia/reperfusion injury in rat: role of nitric oxide and cyclooxygenase systems.
    Talab SS; Elmi A; Emami H; Nezami BG; Assa S; Ghasemi M; Tavangar SM; Dehpour AR
    Eur J Pharmacol; 2012 Apr; 681(1-3):94-9. PubMed ID: 22342279
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lithium chloride-induced cardiovascular changes in rabbits are mediated by adenosine triphosphate-sensitive potassium channels.
    Abdel-Zaher AO; Abdel-Rahman MM
    Pharmacol Res; 1999 Apr; 39(4):275-82. PubMed ID: 10208757
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Staying at the crossroads: assessment of the potential of serum lithium monitoring in predicting an ideal lithium dose.
    Lima TZ; Blanco MM; Santos Júnior JG; Coelho CT; Mello LE
    Braz J Psychiatry; 2008 Sep; 30(3):215-21. PubMed ID: 18833421
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In vitro iontophoretic release of lithium chloride and lidocaine hydrochloride from polymer electrolytes.
    Sahota TS; Latham RJ; Linford RG; Taylor PM
    Drug Dev Ind Pharm; 2000 Oct; 26(10):1039-44. PubMed ID: 11028218
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Urinary excretion, tubular reabsorption and biliary excretion of cobalt 60 in dogs.
    LEE CC; WOLTERINK LF
    Am J Physiol; 1955 Oct; 183(1):167-72. PubMed ID: 13268656
    [No Abstract]   [Full Text] [Related]  

  • 59. Methods used to decrease lithium absorption or enhance elimination.
    Scharman EJ
    J Toxicol Clin Toxicol; 1997; 35(6):601-8. PubMed ID: 9365427
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Biliary excretion of cerium-144 after intravenous injection in the rat].
    CASTELLINO N; NIZZA P; AEBERHARDT A
    Int J Radiat Biol Relat Stud Phys Chem Med; 1962 Aug; 5():379-99. PubMed ID: 13877194
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.