BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25803121)

  • 1. Significant human impact on the flux and δ(34)S of sulfate from the largest river in North America.
    Killingsworth BA; Bao H
    Environ Sci Technol; 2015 Apr; 49(8):4851-60. PubMed ID: 25803121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing Pyrite-Derived Sulfate in the Mississippi River with Four Years of Sulfur and Triple-Oxygen Isotope Data.
    Killingsworth BA; Bao H; Kohl IE
    Environ Sci Technol; 2018 Jun; 52(11):6126-6136. PubMed ID: 29745225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isotope evidence for temporal and spatial variations of anthropogenic sulfate input in the Yihe River during the last decade.
    Duan HZ; Zhang D; Zhao ZQ; Jiang H; Zhang C; Huang XY; Ma BJ; Guo QJ
    Environ Pollut; 2022 Nov; 313():120063. PubMed ID: 36049577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using δ
    Zheng L; Chen X; Dong X; Wei X; Jiang C; Tang Q
    Ecotoxicol Environ Saf; 2019 Oct; 181():231-240. PubMed ID: 31195232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sources and mixing of sulfate contamination in the water environment of a typical coal mining city, China: evidence from stable isotope characteristics.
    Chen X; Zheng L; Dong X; Jiang C; Wei X
    Environ Geochem Health; 2020 Sep; 42(9):2865-2879. PubMed ID: 32026272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution characteristics and source analysis of sulfate in the main rivers of Heze city, China.
    Ma Q; Xing C; Sun H; Zhang X; Xu L
    Water Sci Technol; 2021 Nov; 84(10-11):2818-2829. PubMed ID: 34850696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significant influence of water diversion and anthropogenic input on riverine sulfate based on sulfur and oxygen isotopes.
    Zhang D; Xue T; Xiao J; Chai N; Gong SG
    J Hazard Mater; 2024 Jan; 461():132622. PubMed ID: 37757557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of stable isotopes (δ³⁴S-SO₄, δ¹⁸O-SO₄, δ¹⁵N-NO ₃, δ¹⁸O-NO ₃) to determine natural background and contamination sources in the Guadalhorce River Basin (southern Spain).
    Urresti-Estala B; Vadillo-Pérez I; Jiménez-Gavilán P; Soler A; Sánchez-García D; Carrasco-Cantos F
    Sci Total Environ; 2015 Feb; 506-507():46-57. PubMed ID: 25460938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Seasonal Variation and Sources Identification of Dissolved Sulfate in a Typical Karst Subterranean Stream Basin Using Sulfur and Oxygen Isotopes].
    Ren K; Pan XD; Lan GJ; Peng C; Liang JP; Zeng J
    Huan Jing Ke Xue; 2021 Sep; 42(9):4267-4274. PubMed ID: 34414724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-isotopes revealing the coastal river anthropogenic pollutants and natural material flux to ocean: Sr, C, N, S, and O isotope study.
    Zhang S; Han G; Zeng J; Liu M; Li X; Liu J
    Environ Sci Pollut Res Int; 2022 Aug; 29(40):61397-61411. PubMed ID: 35441999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical and isotopic compositions of the Minjiang River, a headwater tributary of the Yangtze River.
    Li XD; Masuda H; Liu CQ
    J Environ Qual; 2008; 37(2):409-16. PubMed ID: 18268304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contaminant sources and processes affecting spring water quality in a typical karst basin (Hongjiadu Basin, SW China): insights provided by hydrochemical and isotopic data.
    Ren K; Pan X; Zeng J; Yuan D
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):31354-31367. PubMed ID: 31473924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution model of δ³⁴S and δ¹⁸O in dissolved sulfate in volcanic fan aquifers from recharge to coastal zone and through the Jakarta urban area, Indonesia.
    Hosono T; Delinom R; Nakano T; Kagabu M; Shimada J
    Sci Total Environ; 2011 Jun; 409(13):2541-54. PubMed ID: 21507462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury isotope compositions in large anthropogenically impacted Pearl River, South China.
    Zhang Y; Chen J; Zheng W; Sun R; Yuan S; Cai H; Yang DA; Yuan W; Meng M; Wang Z; Liu Y; Liu J
    Ecotoxicol Environ Saf; 2020 Mar; 191():110229. PubMed ID: 31986456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional and temporal variability of the isotope composition (O, S) of atmospheric sulphate in the region of Freiberg, Germany, and consequences for dissolved sulphate in groundwater and river water.
    Tichomirowa M; Heidel C
    Isotopes Environ Health Stud; 2012; 48(1):118-43. PubMed ID: 22092070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal and event variations in delta34S values of stream sulfate in a Vermont forested catchment: implications for sulfur sources and cycling.
    Shanley JB; Mayer B; Mitchell MJ; Bailey SW
    Sci Total Environ; 2008 Oct; 404(2-3):262-8. PubMed ID: 18456308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The origin and migration of the dissolved sulfate from precipitation in Seoul, Korea.
    Kim Y; Lee I; Lim C; Farquhar J; Lee SM; Kim H
    Environ Pollut; 2018 Jun; 237():878-886. PubMed ID: 29525083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfur speciation and stable isotope trends of water-soluble sulfates in mine tailings profiles.
    Dold B; Spangenberg JE
    Environ Sci Technol; 2005 Aug; 39(15):5650-6. PubMed ID: 16124299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. δ34S and δ18O of dissolved sulfate as biotic tracer of biogeochemical influences on arsenic mobilization in groundwater in the Hetao Plain, Inner Mongolia, China.
    Li MD; Wang YX; Li P; Deng YM; Xie XJ
    Ecotoxicology; 2014 Dec; 23(10):1958-68. PubMed ID: 25149868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing Contamination Sources by Using Sulfur and Oxygen Isotopes of Sulfate Ions in Xijiang River Basin, Southwest China.
    Han G; Tang Y; Wu Q; Liu M; Wang Z
    J Environ Qual; 2019 Sep; 48(5):1507-1516. PubMed ID: 31589715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.