These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 25803190)

  • 1. Vesicular exocytosis and microdevices - microelectrode arrays.
    Amatore C; Delacotte J; Guille-Collignon M; Lemaître F
    Analyst; 2015 Jun; 140(11):3687-95. PubMed ID: 25803190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring of vesicular exocytosis from single cells using micrometer and nanometer-sized electrochemical sensors.
    Wang W; Zhang SH; Li LM; Wang ZL; Cheng JK; Huang WH
    Anal Bioanal Chem; 2009 May; 394(1):17-32. PubMed ID: 19274456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indium Tin Oxide devices for amperometric detection of vesicular release by single cells.
    Meunier A; Fulcrand R; Darchen F; Guille Collignon M; Lemaître F; Amatore C
    Biophys Chem; 2012 Mar; 162():14-21. PubMed ID: 22257976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantal Release Analysis of Electrochemically Active Molecules Using Single-Cell Amperometry.
    Machado JD; Montenegro P; Domínguez N
    Methods Mol Biol; 2023; 2565():203-211. PubMed ID: 36205896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial resolution of single-cell exocytosis by microwell-based individually addressable thin film ultramicroelectrode arrays.
    Wang J; Trouillon R; Dunevall J; Ewing AG
    Anal Chem; 2014 May; 86(9):4515-20. PubMed ID: 24712854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring the Effect of Osmotic Stress on Secretory Vesicles and Exocytosis.
    Fathali H; Dunevall J; Majdi S; Cans AS
    J Vis Exp; 2018 Feb; (132):. PubMed ID: 29553491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical Strain Induces and Increases Vesicular Release Monitored by Microfabricated Stretchable Electrodes.
    Yan J; Zhang FL; Jin KQ; Li JX; Wang LJ; Fan WT; Huang WH; Liu YL
    Angew Chem Int Ed Engl; 2024 Jul; 63(30):e202403241. PubMed ID: 38710651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative chemical analysis of single cells.
    Heien ML; Ewing AG
    Methods Mol Biol; 2009; 544():153-62. PubMed ID: 19488699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous study of subcellular exocytosis with individually addressable multiple microelectrodes.
    Wang J; Ewing AG
    Analyst; 2014 Jul; 139(13):3290-5. PubMed ID: 24740449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon-ring microelectrode arrays for electrochemical imaging of single cell exocytosis: fabrication and characterization.
    Lin Y; Trouillon R; Svensson MI; Keighron JD; Cans AS; Ewing AG
    Anal Chem; 2012 Mar; 84(6):2949-54. PubMed ID: 22339586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exocytosis: using amperometry to study presynaptic mechanisms of neurotoxicity.
    Westerink RH
    Neurotoxicology; 2004 Mar; 25(3):461-70. PubMed ID: 15019309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes.
    Li X; Majdi S; Dunevall J; Fathali H; Ewing AG
    Angew Chem Int Ed Engl; 2015 Oct; 54(41):11978-82. PubMed ID: 26266819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying exocytosis by combination of membrane capacitance measurements and total internal reflection fluorescence microscopy in chromaffin cells.
    Becherer U; Pasche M; Nofal S; Hof D; Matti U; Rettig J
    PLoS One; 2007 Jun; 2(6):e505. PubMed ID: 17551585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting Microelectrode Geometry for Comprehensive Detection of Individual Exocytosis Events at Single Cells.
    De Alwis AC; Denison JD; Shah R; McCarty GS; Sombers LA
    ACS Sens; 2023 Aug; 8(8):3187-3194. PubMed ID: 37552870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time course of release of catecholamines from individual vesicles during exocytosis at adrenal medullary cells.
    Wightman RM; Schroeder TJ; Finnegan JM; Ciolkowski EL; Pihel K
    Biophys J; 1995 Jan; 68(1):383-90. PubMed ID: 7711264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Invariance of exocytotic events detected by amperometry as a function of the carbon fiber microelectrode diameter.
    Amatore C; Arbault S; Bouret Y; Guille M; Lemaître F; Verchier Y
    Anal Chem; 2009 Apr; 81(8):3087-93. PubMed ID: 19290664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling amperometry and total internal reflection fluorescence microscopy at ITO surfaces for monitoring exocytosis of single vesicles.
    Meunier A; Jouannot O; Fulcrand R; Fanget I; Bretou M; Karatekin E; Arbault S; Guille M; Darchen F; Lemaître F; Amatore C
    Angew Chem Int Ed Engl; 2011 May; 50(22):5081-4. PubMed ID: 21523868
    [No Abstract]   [Full Text] [Related]  

  • 18. Relationship between amperometric pre-spike feet and secretion granule composition in chromaffin cells: an overview.
    Amatore C; Arbault S; Bonifas I; Guille M; Lemaître F; Verchier Y
    Biophys Chem; 2007 Sep; 129(2-3):181-9. PubMed ID: 17587484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time monitoring of auxin vesicular exocytotic efflux from single plant protoplasts by amperometry at microelectrodes decorated with nanowires.
    Liu JT; Hu LS; Liu YL; Chen RS; Cheng Z; Chen SJ; Amatore C; Huang WH; Huo KF
    Angew Chem Int Ed Engl; 2014 Mar; 53(10):2643-7. PubMed ID: 24482020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of chromogranins in the secretory pathway.
    Estevez-Herrera J; Pardo MR; Dominguez N; Pereda D; Machado JD; Borges R
    Biomol Concepts; 2013 Dec; 4(6):605-9. PubMed ID: 25436760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.