BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 25803443)

  • 1. Mechanisms explaining nursery habitat association: how do juvenile snapper (Chrysophrys auratus) benefit from their nursery habitat?
    Parsons DM; Middleton C; Spong KT; Mackay G; Smith MD; Buckthought D
    PLoS One; 2015; 10(3):e0122137. PubMed ID: 25803443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do nursery habitats provide shelter from flow for juvenile fish?
    Parsons DM; MacDonald I; Buckthought D; Middleton C
    PLoS One; 2018; 13(1):e0186889. PubMed ID: 29342152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predators and habitat association of post-settlement snapper (Chrysophrys auratus).
    Parsons D; Taylor R; Hughes R; Middleton C; Gublin Y; Levell D
    J Fish Biol; 2022 Dec; 101(6):1509-1521. PubMed ID: 36131511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of temperature and meal size on the aerobic scope and specific dynamic action of two temperate New Zealand finfish Chrysophrys auratus and Aldrichetta forsteri.
    Flikac T; Cook DG; Davison W
    J Comp Physiol B; 2020 Mar; 190(2):169-183. PubMed ID: 31996987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing Habitat Use by Snapper (Chrysophrys auratus) from Baited Underwater Video Data in a Coastal Marine Park.
    Terres MA; Lawrence E; Hosack GR; Haywood MD; Babcock RC
    PLoS One; 2015; 10(8):e0136799. PubMed ID: 26317655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feeding biomechanics of juvenile red snapper (Lutjanus campechanus) from the northwestern Gulf of Mexico.
    Case JE; Westneat MW; Marshall CD
    J Exp Biol; 2008 Dec; 211(Pt 24):3826-35. PubMed ID: 19043055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decadal Changes in the Abundance and Length of Snapper (Chrysophrys auratus) in Subtropical Marine Sanctuaries.
    Malcolm HA; Schultz AL; Sachs P; Johnstone N; Jordan A
    PLoS One; 2015; 10(6):e0127616. PubMed ID: 26061036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feeding ecology of King George whiting Sillaginodes punctatus (Perciformes) recruits in seagrass and unvegetated habitats. Does diet reflect habitat utilization?
    Jenkins GP; Syme A; Macreadie PI
    J Fish Biol; 2011 May; 78(5):1561-73. PubMed ID: 21539559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-shelf habitat shifts by red snapper (Lutjanus campechanus) in the Gulf of Mexico.
    Dance MA; Rooker JR
    PLoS One; 2019; 14(3):e0213506. PubMed ID: 30870449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The functional value of Caribbean coral reef, seagrass and mangrove habitats to ecosystem processes.
    Harborne AR; Mumby PJ; Micheli F; Perry CT; Dahlgren CP; Holmes KE; Brumbaugh DR
    Adv Mar Biol; 2006; 50():57-189. PubMed ID: 16782451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial and Dietary Overlap Creates Potential for Competition between Red Snapper (Lutjanus campechanus) and Vermilion snapper (Rhomboplites aurorubens).
    Davis WT; Drymon JM; Powers SP
    PLoS One; 2015; 10(12):e0144051. PubMed ID: 26630481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Juvenile sparids (Rhabdosargus holubi) consistently select structurally dense vegetated habitat in nursery seascapes.
    Welch RJ; Childs AR; Hempel C; James NC
    J Fish Biol; 2024 Jan; 104(1):11-19. PubMed ID: 37697827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nearshore seascape connectivity enhances seagrass meadow nursery function.
    Olson AM; Hessing-Lewis M; Haggarty D; Juanes F
    Ecol Appl; 2019 Jul; 29(5):e01897. PubMed ID: 31125160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recruitment and connectivity influence the role of seagrass as a penaeid nursery habitat in a wave dominated estuary.
    Taylor MD; Fry B; Becker A; Moltschaniwskyj N
    Sci Total Environ; 2017 Apr; 584-585():622-630. PubMed ID: 28131456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fish nursery value of algae habitats in temperate coastal reefs.
    Hinz H; ReƱones O; Gouraguine A; Johnson AF; Moranta J
    PeerJ; 2019; 7():e6797. PubMed ID: 31143530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial variation in density and size structure indicate habitat selection throughout life stages of two Southwestern Atlantic snappers.
    Aschenbrenner A; Hackradt CW; Ferreira BP
    Mar Environ Res; 2016 Feb; 113():49-55. PubMed ID: 26599976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonal and spatial ontogenetic movements of Gerreidae in a Brazilian tropical estuarine ecocline and its application for nursery habitat conservation.
    Ramos JA; Barletta M; Dantas DV; Costa MF
    J Fish Biol; 2016 Jul; 89(1):696-712. PubMed ID: 26887637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diet and food partitioning between juveniles of mutton Lutjanus analis, dog Lutjanus jocu and lane Lutjanus synagris snappers (Perciformes: Lutjanidae) in a mangrove-fringed estuarine environment.
    Pimentel CR; Joyeux JC
    J Fish Biol; 2010 Jun; 76(10):2299-317. PubMed ID: 20557594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diet variation of a generalist fish predator, grey snapper Lutjanus griseus, across an estuarine gradient: trade-offs of quantity for quality?
    Yeager LA; Layman CA; Hammerschlag-Peyer CM
    J Fish Biol; 2014 Aug; 85(2):264-77. PubMed ID: 24946976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feeding currents in calanoid copepods: two new hypotheses.
    Strickler JR
    Symp Soc Exp Biol; 1985; 39():459-85. PubMed ID: 3914725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.