BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 25803443)

  • 21. Low O2 avoidance is associated with physiological perturbation but not exhaustion in the snapper (Pagrus auratus: Sparidae).
    Cook DG; Herbert NA
    Comp Biochem Physiol A Mol Integr Physiol; 2012 Aug; 162(4):310-6. PubMed ID: 22507523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An uncertain future: Effects of ocean acidification and elevated temperature on a New Zealand snapper (Chrysophrys auratus) population.
    Parsons DM; Bian R; McKenzie JR; McMahon SJ; Pether S; Munday PL
    Mar Environ Res; 2020 Oct; 161():105089. PubMed ID: 32738554
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental conditions constrain nursery habitat value in Australian sub-tropical estuaries.
    Mattone C; Bradley M; Barnett A; Konovalov DA; Sheaves M
    Mar Environ Res; 2022 Mar; 175():105568. PubMed ID: 35134639
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fine-scale responses of mobile invertebrates and mesopredatory fish to habitat configuration.
    Lanham BS; Poore AGB; Gribben PE
    Mar Environ Res; 2021 Jun; 168():105319. PubMed ID: 33845258
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interactive effects of habitat selection, food supply and predation on recruitment of an estuarine fish.
    Levin P; Petrik R; Malone J
    Oecologia; 1997 Sep; 112(1):55-63. PubMed ID: 28307376
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predation avoidance and foraging efficiency contribute to mixed-species shoaling by tropical and temperate fishes.
    Paijmans KC; Booth DJ; Wong MYL
    J Fish Biol; 2020 Mar; 96(3):806-814. PubMed ID: 32031243
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Explaining abundance-occupancy relationships in specialists and generalists: a case study on aquatic macroinvertebrates in standing waters.
    Verberk WC; van der Velde G; Esselink H
    J Anim Ecol; 2010 May; 79(3):589-601. PubMed ID: 20202007
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Movements, Home Range and Site Fidelity of Snapper (Chrysophrys auratus) within a Temperate Marine Protected Area.
    Harasti D; Lee KA; Gallen C; Hughes JM; Stewart J
    PLoS One; 2015; 10(11):e0142454. PubMed ID: 26544185
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmental conditions, diel period, and fish size influence the horizontal and vertical movements of red snapper.
    Bacheler NM; Shertzer KW; Runde BJ; Rudershausen PJ; Buckel JA
    Sci Rep; 2021 May; 11(1):9580. PubMed ID: 33953219
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shallow rocky nursery habitat for fish: Spatial variability of juvenile fishes among this poorly protected essential habitat.
    Cheminée A; Rider M; Lenfant P; Zawadzki A; Mercière A; Crec'hriou R; Mercader M; Saragoni G; Neveu R; Ternon Q; Pastor J
    Mar Pollut Bull; 2017 Jun; 119(1):245-254. PubMed ID: 28411945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The importance of considering spatial attributes in evaluating estuarine habitat condition: the South Carolina experience.
    Van Dolah RF; Chestnut DE; Jones JD; Jutte PC; Riekerk G; Levisen M; McDermott W
    Environ Monit Assess; 2003; 81(1-3):85-95. PubMed ID: 12620007
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temporal and spatial comparisons of the reproductive biology of northern Gulf of Mexico (USA) red snapper (Lutjanus campechanus) collected a decade apart.
    Kulaw DH; Cowan JH; Jackson MW
    PLoS One; 2017; 12(3):e0172360. PubMed ID: 28355239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Connectivity of a large embayment and coastal fishery: spawning aggregations in one bay source local and broad-scale fishery replenishment.
    Hamer PA; Acevedo S; Jenkins GP; Newman A
    J Fish Biol; 2011 Apr; 78(4):1090-109. PubMed ID: 21463309
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of freshwater inflow and seascape context on occurrence of juvenile spotted seatrout Cynoscion nebulosus across a temperate estuary.
    Whaley SD; Shea CP; Santi EC; Gandy DA
    PLoS One; 2023; 18(11):e0294178. PubMed ID: 38015854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Swim bladder function and buoyancy control in pink snapper (Pagrus auratus) and mulloway (Argyrosomus japonicus).
    Stewart J; Hughes JM
    Fish Physiol Biochem; 2014 Apr; 40(2):335-46. PubMed ID: 23979722
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mini review: hydrodynamics of larval settlement into fouling communities.
    Koehl MR
    Biofouling; 2007; 23(5-6):357-68. PubMed ID: 17852070
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dietary variations within a family of ambush predators (Platycephalidae) occupying different habitats and environments in the same geographical region.
    Coulson PG; Platell ME; Clarke KR; Potter IC
    J Fish Biol; 2015 Mar; 86(3):1046-77. PubMed ID: 25683280
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficacy of indigenous larvivorous fishes against Culex quinquefasciatus in the presence of alternative prey: implications for biological control.
    Aditya G; Pal S; Saha N; Saha G
    J Vector Borne Dis; 2012 Dec; 49(4):217-25. PubMed ID: 23428520
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coordination of feeding, locomotor and visual systems in parrotfishes (Teleostei: Labridae).
    Rice AN; Westneat MW
    J Exp Biol; 2005 Sep; 208(Pt 18):3503-18. PubMed ID: 16155223
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mapping queen snapper (Etelis oculatus) suitable habitat in Puerto Rico using ensemble species distribution modeling.
    Overly KE; Lecours V
    PLoS One; 2024; 19(2):e0298755. PubMed ID: 38408089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.